
ABSTRACTS

ModelingToolkit.jl (MTK) is an acausal modeling language for
high-performance symbolic-numeric computation in scientific
computing and scientific machine learning. Like many Modelica
implementations, MTK also performs structural transformation
passes on di!erential-algebraic equations. MTK uses alias
elimination, partial state selection, and tearing to simplify general
DAEs to index 1 semi-implicit DAEs or ODEs. One design that
makes MTK distinct from all the other Modelica implementations is
that it tries to work with the rest of the Julia language. Thus, users
can not only take advantage of the Julia ecosystem, but also apply
MTK transformations seamlessly on ordinary models written in
Julia without MTK in mind.

MTK was first developed by following Otter and Elmqvist’s 2017
paper “Transformation of Di!erential Algebraic Array Equations to
Index One Form” Since then, we have prototyped alternative alias
elimination and partial state selection algorithms in comparison to
those described in their paper.

Equation-oriented simulation tools need to lower the index of
DAEs so that numerical solvers can perform consistent initialization
and integrate them. Index reduction algorithms work by adding
di!erentiated equations to the original system, and then to
maintain a balanced model, the partial state selection pass needs
to select as many dummy derivatives as the number of added
equations. Modia.jl’s partial state selection pass relies on tearing
to detect dummy derivatives which is an elegant approach that
bridges Pantelides’ index reduction algorithm and tearing.

However, the drawback of this approach is that it’s very
computationally expensive to perform tearing optimally. Thus,
in practice, only heuristic algorithms are used for performance
reasons. Unfortunately, a heuristic tearing approach cannot
guarantee partial state selection to produce a balanced model,
since we must select a precise number of dummy derivatives to
keep the DAE system bal-anced. In addition, tearing is oblivious
to the numerical rank of the Jacobian matrix of the transformed

system as it only has access to structural information. Hence,
Modia’s approach could produce numerically singular systems even
for linear systems with only integer coe"cients. To circumvent
the aforementioned di"culties, MTK uses the dummy derivative
algorithm proposed by Mattsson and Söderlind, and when the
Jacobian is integer valued, we use the Bareiss algorithm to select
the spanning columns to ensure that the transformed system is
always numerically non-singular for this common case. When the
Jacobian is non-integer valued, we use the bipartite matching
algorithm to pick dummy derivatives that result in at least
structurally fully ranked Jacobian.

MTK’s alias elimination is strengthened so that it can simplify
equivalent di!erentiated variables as well. After applying the
Bareiss algorithm to the linear subsystem to identify aliasing pairs,
we may have structures like

where = denotes alias and !! points to the di!erentiated variable.

To eliminate redundant di!erentiated variables, MTK picks the
least di!erentiated variables and aliases all other variables to that
particular di!erentiation chain. In this case, if we pick x as the root
variable, we would generate the following aliases

In this talk, we will present how MTK achieves an easy-to
understand implementation of simplification passes by utilizing
high-level features of Julia like multiple dispatch and union
splitting. We will first review the role of simplification steps in
compiling declarative equation-oriented models to executable
simulation code, and then demonstrate how these steps are
formulated in MTK. Furthermore, we will provide examples of how
these novel approaches enable new applications in optimization
systems and stochastic di!erential algebraic equation systems.

z !! dz
dt

zt !! dzt
dt

x !! dx
dt

!! d2x
dt2

!! d3x
dt3

k !! dk
dt

ddx

y

z :=
dk

dt
:=

dx

dt
dz

dt
:= zt := ddx := y :=

d2x

dt2

dzt
dt

:=
d3x

dt3
.

2

z !! dz
dt

zt !! dzt
dt

x !! dx
dt

!! d2x
dt2

!! d3x
dt3

k !! dk
dt

ddx

y

z :=
dk

dt
:=

dx

dt
dz

dt
:= zt := ddx := y :=

d2x

dt2

dzt
dt

:=
d3x

dt3
.

2

AMERICAN MODELICA CONFERENCE 202236

Yingbo Ma | yingbo.ma@juliacomputing.com

Keno Fischer | keno.fischer@juliacomputing.com

Viral Shah | viral@juliacomputing.com

Julia Computing Inc., USA

Chris Rackauckas | chris.rackauckas@juliacomputing.com

Julia Computing Inc., USA
Massachusetts Institute of Technology, USA

Prototyping Composable Simplification Passes for
Equation-Oriented Models Using ModelingToolkit.jl

