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Outline
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• A peak inside MERL.  
• What do we do?
• What are our challenges?

• Research and Development Opportunities
• HVAC equipment level.  

• Why’s this so hard?  
• MPC?
• Model Reduction / Analysis
• Hybrid multi-mode modeling, simulation
• Carbon capture?

• HVAC System / Building Level.   MPC ?
• Service / “Solutions” Level

• Digital Twin  ?
• Estimation, calibration, feedback.

Objectives: 
1. Alignment of incentives.
2. Get out of your silo.

Counter Example:
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Mitsubishi Electric
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Automotive Equipment

Home Products

Public Systems

Space Systems Visual Information Systems

Energy Systems

Air Conditioning Systems

Factory Automation Systems

Semiconductors & Devices

Transportation Systems

Building Systems

Information & Comm. Systems
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• Certified ZEB* while under construction
• Medium-sized office building: 5,000 m^3, 4 floors
• PV, Radiant + Convective Cooling, VRF equipment
• Some DC Power, Natural Lighting, System Control
• First year of operation – better than Net Zero 

Mitsubishi Electric Sustie Building
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* BELS 5-star rating(☆☆☆☆☆) and Net Zero 
Energy Building (『 ZEB』) certification from 
the Building-Housing Energy-efficiency 
Labeling System

26-OCT-2022



© MERL

Trends – Making Model-Based Design More Important
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JIS B8616 Minimum Compressor Speed Test: Ramp Profile
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MELCO VRF Product Under Test

New Testing Standards Electrification

ZEB HVAC as Service

F-Gas Phase-Out

Building Performance

Building Standards
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• More variable actuation.  Compressor speeds, valves, fans etc.
• Wider operating envelopes and conditions.
• More integration horizontally and vertically.
• Limited measurements.
• Dynamic system is increasingly…

– Multivariable, interacting, coupled.
– Nonlinear.  Loop gain changes.
– Many constraints.  Operating limits.

Implications on Products 
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Hybrid VRF 
Branch Controller
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MERL Strategy - Mathematical Model – Based Design (M-MBD)
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Definition: A mathematical method for designing complex architectures, control, signal 
processing and communication systems*

* https://en.wikipedia.org/wiki/Model-based_design

Models
Know-How
(Methods) Process

Loop-Shaping

Matlab & Simulink
Model Reduction

J =
@F

@x
+ ↵

@F

@ẋ
ẋ = Ax+Bu

y = Cx+Du

Y = H(j!)U

Stage Gate Reviews

Design “V”

Libraries

+ +

Mathematical
methods of 
design and 

analysis

Models + tools 
that enable

mathematical 
methods ...

Not just trial-and-
error simulation

Not too 
many tools!

KISS
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MERL HVAC Strategy: Mathematical Model-Based Design
Build Models Solve Robust Design Problems 

Do Experiments
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• System-level dynamic models
• Accrue reusable libraries
• Use: More than simulation

• Equipment: 1-Zone RAC, 4-Zone HAC
• Purpose: Measure dynamic response
• Use: Model and control algorithm validation

• Control: RAC, HAC, HVRF, Hyper Dry...
• Estimation: Digital Twin, Load Estimation...
• Dynamic Analysis: Pressure Oscillation, Vibration...

• Solve fundamental problems
• The “M-” in “M-MBD” = Math
• Rigorous solutions

Use Math
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MERL Model-Based Control Design Process

Build 
Modelica Models Control Design

Desktop Simulation
(Analog, then Digital)

Autocode
Laboratory Test

Requirements

Logic Design

1 2

3

4
5

6 7

C Code

Field Trials

Ready for use
In development, low risk
Future development

Formal 
synthesis

New 
technology for 

generating 
embedded 

code (eFMI)

New 
laboratory 

control 
interface
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No 
Recoding

No 
Recoding
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Modelica Enables M-MBD
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Modelica Frequency Response

J =
@F

@x
+ ↵

@F

@ẋ

Feedback Control Design

Other tools do not support this!

0 = F (x, ẋ, u)

Icon View

Code View

Math View

Modelica: 
Automatic

Many 
mathematical 

methods

Mathematical 
methods
(M-MBD)

Feedback Control Configuration

Key
Step
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Y = H(j!)U

ẋ = Ax+Bu

y = Cx+Du

They only 
simulate

Formal methods – not 
“guess and check”
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Typical Closed Loop Model
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Replaceable Model
Linear or Nonlinear

Replaceable Controller
TSH Control or TD Control

Start up Logic – Turns on feedback 
loops 

Heat load and ambient temperature 
disturbances

Room and condensing temperature 
reference set-points
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• Sparse: Jacobian is <1% non-zero.  Symbolic construction is vital.

• Stiff: Time Constants from 1ms – 1Ms à Implicit Solvers
• But…Linearizations are reducable if you are careful.

Stiff, Sparse, Ill-Conditioned
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Indoor Unit in Cooling Mode (Evaporator)
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Refrigerant Subcooling Loop Gain Change
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Sometimes superheated vapor passes beyond sensor 1:
• Subcooling calculation is incorrect
• Transfer function from LEV to Tsc changes sign
• Inner Loop becomes unstable
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Instability from Tsc measurement
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Engineering Use
• Modelica is complex and challenging to use in the factory
• FMI + Excel makes models accessible

Modelica Model

MS Excel Interface

System

Steady State and
Transient SimulationController

15CONFIDENTIAL26-OCT-2022
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Model Predictive Control of Equipment
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xp(k + 1) = Apxp(k) +Bpu(k)

z(k) = Epxp(k)

v(k) = Fpxp(k) +Gpu(k)

J(u) = xT
p (N)Pxp(N) +

N�1X

k=1

zT (k)Qz(k) + uT (k)Ru(k)

vmin  v(k)  vmax

bxe(k + 1) = Aebxe(k) +Beu(k) +H (by(k)� y(k))

by(k) = Cebxe(k) State Estimator

Prediction Model

Cost and Constraints

Optimizer

MPC

HAC

Controls Sensors

Tuning
>1000 

parameters

Robustness
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First Attempt with MPC (2017)
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Time (min)

Time (min)

Oscillations

Oscillations

Oscillations

J(u) = xT
p (N)Pxp(N) +

N�1X

k=1

zT (k)Qz(k) + uT (k)Ru(k)

bxe(k + 1) = Aebxe(k) +Beu(k) +H (by(k)� y(k))

by(k) = Cebxe(k)

(1978)

• This MPC is based on Linear Quadratic Regulation

• Estimator is Luenberger Observer

• Cost is Quadratic
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H-Infinity Loop Shaping for Robust Performance

CONFIDENTIAL 18

State Estimator

Gain

Controls Sensors

Ks

Input
Weight

Output
Weight

Robust Compensator

bxs(k + 1) = Asbxs(k) +Bsus(k) +Hs (bys(k)� ys(k))

bys(k) = Csbxs(k)

1) Design Weights 
by Loop Shaping
(Easy-to-Tune)

2) Compute 
Robustifying
Compensator

PI

PI

3) Note Structure: 
Estimated State 

Feedback…

LAG

4) Compute MPC cost from 
Ks using inverse optimality
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Heat
Pump

Input
Scale

Output
Scale

Scaled  Plant  
W1 W2

P

Shaped Plant 

TD Schedule

Reduced-Order Disturbance Observer

Loop-Shaped State EstimatorH1
Predictive Model

Optimizer

ˆ̄x(k)

x̂s(k)

TDref (k)

Cost
v(k) 2 V

Constraint

H-Infinity Loop Shaped MPC
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Computed in 
previous step

MPC cost from Ks using 
inverse optimality
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First Successful Experiments (2019-2020)
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• Goal: Robust operation à Energy efficiency.
• Other goal: Reduce refrigerant charge.
• Modeling and Simulation of multi-model (hybrid) systems

– On-off valves, different modes of operation (heating, cooling, defrost, off)

• Nonlinear model reduction
– Not black box.  Retain the structure.  Symbolic.
– A math + computation + computer science problem.  

• Model Predictive Control
– Robustness in the sense of feedback loops
– Mode switching
– Gain scheduling
– Embedded Realizations

Research Problems at Equipment Level

CONFIDENTIAL 2126-OCT-2022
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What is a ``Digital Twin’’ ?

CONFIDENTIAL 22

• “Big Data”
• “Internet of Things”
• YouTube Videos• Modeling

• Data Assimilation
• Estimation

Past MarketingPresent

“Houston, we 
have a problem”

• A virtual (computer simulation) model of a process or product
• Used in (real-time) operation
• Combining real-time data with a (set of) model(s), used throughout the product lifecycle
• A proven and effective technology e.g. weather forecasting

26-OCT-2022
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• Target 1: Estimate refrigerant charge + HEX heat flux for equipment in operation
• Target 2: Estimate heat loads, heat flows in buildings

Opportunities for Digital Twins
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Equipment Digital Twin Building-Level Digital TwinIT Platform

Digital Twin Digital Twin

Estimating unmeasured or 
unmeasurable equipment 
variables from measured data

Estimating unmeasured or 
unmeasurable building 
variables from measured data

Ceiling heat flow 
is dominantPeak at 

19:15

West wall heat 
flow in evening

Negative heat 
flow at night
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• Inputs are uncertain, and initial conditions are unknown
• Dynamics are very, very slow – errors in initial conditions take many days to converge
• Poor robustness to model uncertainty 
• Poor use of measurements

Naïve Attempt #1: Open Loop Model
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Weather

Internal Loads

Weather
Internal Loads

Initial Conditions

Measurements
Physical

Digital

Math
ẋ = f(x, u, d, q) x(t0) = x0

y = h(x, u, d, q)

z = g(x, u, d, q)

Control input 
Measured Input 

Unmeasured Input 
Initial Condition 

u(t)
d(t)
q(t)
x0

Performance Variables
Usage

Usage

What if these are 
unknown?

How to compute 
these? Guess

Assume L

L

A model = A Digital Twin
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• Uncertain boundary conditions are estimated by feedback
• Measurement error is fed back through gain K – EKF or observer
• Initial Conditions are designed to avoid exciting very slow dynamics

Naïve Attempt #2: Use feedback (EKF + FMU)
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Unmeasured Disturbances

Measured Disturbances Measurements
Physical

Digital

Performance Variables

K

Estimated Measurements

Output Injection

Estimated Disturbance

Estimated Performance
Variables

+
-

x̂0

• Adds robustness to model 
uncertainty.

• Enables Disturbance 
Estimation

Designed 
using 

estimation 
theory.

Requires 
modification 
of simulation 

model
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It worked well enough write a paper, but…
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Ceiling Heat 
Flow is 

Dominant…

West Wall 
Heat Flow in 

Evening

And negative 
at night

But…

Correction step causes 
constraint violations.

Solver crashes.

Modelica models were not 
designed for this.

Even as FMUs
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• Constrained Estimation EKF (and related varieties)
• Model Reduction + Symbolic Model (Julia) – Symbolic Jacobian helps
• But…Model is still very stiff.  Is there a better formulation?

Slightly Less Naïve Attempt #3

2726-OCT-2022



© MERL

Building Model Calibration for Digital Twin
• Objective: Calibrate integrated building/equipment models using measurement data to improve predictions

• Use Bayesian optimization employing sparse Gaussian processes to identify 17 model parameters
• All parameters identified within range of ASHRAE Guideline 14, 70% are greater than 95% accuracy

Parameter True Value Est. Value Accuracy

Airflow infiltration rate 0.0337 0.0327 97.1%

Outer IR roof emissivity 0.9 0.863 95.8%

Outer solar roof emissivity 0.9 0.935 96.1%

Outdoor HEX vapor HTC 500 518 96.3%

Outdoor HEX 2-phase HTC 3000 3251 91.6%

Outdoor HEX liquid HTC 700 738 94.6%

Indoor HEX 2-phase HTC 2000 1958 97.9%

Indoor HEX liquid HTC 700 712 98.3%
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• What is its purpose?  And for whom?
– Estimation of charge – of interest to multiple parties (alignment of incentives)

• Data assimilation involves state modification (output injection)
– Modelica models / libraries were not intended for this purpose.
– FMU has limitations – no Jacobian wrt parameters
– Models are stiff and nonlinear.  Is there an implicit formulation?

• How can we use feedback to make a digital twin robust?
– Full state estimation is a brute force solution.

• Consider refrigerant charge estimation.
– Charge is not a state.  It is an output.
– Charge is not conserved in a simulation.  It can change during simulation.  Good?  Bad?
– Mathematics problem first.

• How does this scale up?

Challenges for Digital Twin
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• Modelica (tools + community) can play leading role in development of sustainable HVAC
– Play the long game, maintain a sustained effort
– Align incentives 

• There are terrific research problems to be solved
– Great Ph.D. topics for many backgrounds (math, software, modeling)
– Great topics for government – university – industry collaboration

• If you find yourself in Boston, please visit MERL!

Conclusions

30

Cambridge, MA, USA
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