Transient Simulation of An Air-source Heat Pump under Cycling of Frosting and Reverse-cycle defrosting

Jiacheng Ma¹, Donghun Kim², James E. Braun¹

 ¹Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University West Lafayette, IN, U.S.
 ²Building Technology & Urban Systems Division, Lawrence Berkeley National Laboratory Berkeley, CA, U.S.

October 8, 2022

Outlines

- Introduction
 - Motivation
 - Objectives
- Development of a Dynamic Modeling Framework
 - Reversible heat exchanger model
 - Component models
- Model Validations
 - Experimental facility
 - Simulation results
- Conclusions

Motivation

- Cycling operations of frosting and reverse-cycle defrosting (RCD) is common for air-source heat pump (ASHP) units in winter operations.
- Significant computational complexities are involved in RCD modeling due to reverse refrigerant flow and coupled dynamics with frost.

3

Motivation

□ Absence of a general simulation tool for capturing ASHP dynamics under frosting-defrosting cycling operations.

Reference	Operating Mode	Reverse flow	Experimental validation
Qiao et al. (2017) ^[1]	Heating	Not considered	Vapor injection heat pump
Steiner & Riberer (2013) ^[2]	defrosting	Not considered	CO2 heat pump
Han et al. (2022) ^[3]	defrosting	Not considered	Residential R410Aheat pump
Qiao et al. (2018) ^[4]	defrosting	Modeled	None

Literature review on system-level frosting/defrosting transient simulation

Objectives

- Develop a dynamic modeling framework for ASHP under cycling of frosting and reverse-cycle defrosting.
- Experimentally validate the model at heat pump cycle level.
- Improve model robustness for reversible ASHP systems incorporating frost formation and melting.

Reversible Heat Exchanger (HX) Model

Staggered grid for discretization

HX Model: Metal Structure and Air-side

Metal wall energy balance:
$$(M_{fin}c_{p,fin} + M_tc_{p,t})\frac{dT_w}{dt} = \dot{Q}_{in} + \dot{Q}_{out}$$

Air side heat and mass transfer (forced convection):

$$T_{a,out} = T_{as} + (T_{a,in} - T_{as})e^{-Ntu} \qquad Ntu = \frac{\alpha_h(A_t + \eta_{fin}A_{fin})}{mc_{p,a}}$$

$$\omega_{a,out} = \omega_{a,in} - \left(1 - e^{-\frac{Ntu}{Le^{2/3}}}\right) \max\{0, \omega_{a,in} - \omega_{as,s}\}$$

1-D Frost Formation

$$\rho_{f,ref}[t + \Delta t] = \rho_{f,ref}[t] + \frac{\dot{m}_{\rho}''}{\delta_{f,ref}[t]} \Delta t \quad \text{first-order filter} \quad \frac{d\rho_f}{dt} = \frac{1}{\tau} \left(\rho_{f,ref} - \rho_f\right)$$

$$(\text{update after a fixed time interval}) \quad \delta_{f,ref}[t + \Delta t] = \delta_{f,ref}[t] + \frac{\dot{m}_{\delta}''}{\delta_{\rho,ref}[t]} \Delta t \quad \frac{d\delta_f}{dt} = \frac{1}{\tau} \left(\delta_{f,ref} - \delta_f\right)$$

$$\underbrace{\text{PURDUE}}_{\text{UNIVERSITY}} \quad \text{The Ray W. Herrick Laboratories} \quad \text{make } \delta_f, \rho_f \text{ state variables in CT} \quad \text{CHPB HIGH PERFORMANCE}_{\text{BUILDINGS AT PURDUE}}$$

8

1-D Frost Melting

Frost melting process progresses through predictable stages (5-stage applied here)^[4]

Multi-stage Frost Melting Model

Dynamics of frost layer, water film, air gap of i^{th} stage: $\dot{x} = f_i(x)$

 $x = \begin{bmatrix} T_f & \delta_f & T_{water} & \delta_{water} & T_{air} & \delta_{air} & \rho_f \end{bmatrix}^T$

Developed a robust switching algorithm based on the Fuzzy Modeling approach

$$\dot{x} = \frac{\sum_{i=1}^{5} \omega_i f_i(x)}{\sum_{i=1}^{5} \omega_i}$$

weights $\omega_i(x,\mu)$

10

The Ray W. Herrick Laboratories

Incorporating Frost Models into HX Model

Goal: run frost formation and melting models simultaneously and switch dynamics

The Ray W. Herrick Laboratories formation

melting

Component Models

Component Models

Experimental Facility

A 2-ton commercially available residential heat pump

The Ray W. Herrick Laboratories

Cycling of Frosting-Defrosting Operations

Indoor	Indoor	Outdoor	Outdoor
dry-bulb [°F]	$\mathrm{RH}\left[- ight]$	dry-bulb [°F]	$\mathrm{RH}\left[- ight]$
65	40%	28	85%

15

Simulation Results: refrigerant pressures

16

Simulation Results

Refrigerant liquid-line mass flow rate

Compressor power & Indoor air-side capacity

Simulation Results: frost dynamics

Time Evolution of Non-uniform Frost Formation

Defrost Efficiency

Heat supply to melt frost and vaporize retained water:

 $Q_{melt} = M_f(\Delta h_{sf} + c_p (T_{melt} - T_f))$ $Q_{vaporize} = M_{retained}\Delta h_{fg}$

Conclusions

- Developed a comprehensive dynamic modeling framework for air-source heat pumps under cycling of frosting and reverse-cycle defrosting.
- Conducted experimental tests of a residential heat pump unit for model validations.
- The developed model can predict system transients under cycling operations with satisfactory accuracy and computational speed (RTF 0.49).

References

[1] Qiao, Hongtao, Vikrant Aute, and Reinhard Radermacher (2017). "Dynamic modeling and characteristic analysis of a two-stage vapor injection heat pump system under frosting conditions". In: International Journal of Refrigeration 84, pp. 181–197.

[2] Steiner, Alois and René Rieberer (2013). "Parametric analysis of the defrosting process of a reversible heat pump system for electric vehicles". In: Applied thermal engineering 61.2, pp. 393–400.

[3] Han, Binglong, Tong Xiong, Shijie Xu, Guoqiang Liu, and Gang Yan (2022). "Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model". In: Energy 238, p. 121658.

[4] Qiao, Hongtao, Vikrant Aute, and Reinhard Radermacher (2018). "Modeling of transient characteristics of an air source heat pump with vapor injection during reverse-cycle defrosting". In: International journal of Refrigeration 88, pp. 24–34.

[5] Pollock, Daniel T, Zehao Yang, John T Wen, Yoav Peles, and Michael K Jensen (2013). "Modeling and control of single and multiple evaporator vapor compression cycles for electronics cooling". In: 2013 American Control Conference. IEEE, pp. 1645–1650.

[6] Qiao, Hongtao, Vikrant Aute, and Reinhard Radermacher (2015). "Transient modeling of a flash tank vapor injection heat pump system–Part I: Model development". In: International journal of refrigeration 49, pp. 169–182.

[7] Zimmer, Dirk (2020). "Robust object-oriented formulation of directed thermofluid stream networks". In: Mathematical and Computer Modelling of Dynamical Systems 26.3, pp. 204–233.

Questions?

Appendix

Fan model implementing a robust formulation for modeling air flow maldistribution^[7]

Appendix

A new fan model

The Ray W. Herrick Laboratories