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Background and Motivation

Why District Cooling?

« Space cooling is growing faster than any
other building end use’

 None had modeled complete district
cooling systems (plant + distribution)
featuring hydraulics nor waterside
economizers

Objectives

Gaps in Scientific Literature

 District cooling studies are generally limited
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« Demonstrate how Modelica can enable complete district cooling energy analysis
« |dentify investment-free energy efficiency strategies for a real-world case study

« Evaluate carbon and operational cost savings due to energy retrofits

[1] International Energy Agency. 2018. The future of cooling.



Case Study

« A satellite campus of University of Colorado in
Boulder, CO
« Six Buildings:
* Floor area: 93,990 m2 (1,011,699 ft2)
« Peak load: 2.4 MW
« Radial network with 1.5 km pipes
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Two single compressor chillers (2455 kW each)
Three chilled water pump (30 kW each)

Two condenser water pump (56 kW each)
Non-integrated water side economizer

Four cooling tower units (22 kW each)
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Modeling: District Cooling Systems
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Central Plant
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Control Layer 1. Cooling Mode Control
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Control Layer 2: Chiller Staging Control

Layer 1:

Supervisory Control

Cooling Mode

mode = MC or
mode = PreMC

mode # MC and
mode # PreMC

Layer 2: Layer 3: Layer 4:
Staging Control Subsystem Control Local Control C e n t ra I P I a nt Jor 30s Jfor30s
—_——— e mm e — - = - CHWLoop == == =—===—==—==—== 1
|
I | Chiller with WSE Chiller Evaporator Heat : CW Pump
1 . Speed Control
| Staging Subsystem Flow Rate 1
1 - : CW Pump [~ '| ____________ mode = MC and mode = MC and
1 Chiller Valve . Staging Mgy < 75.71— 126 kg/s and (egw > 7571+ 1.26 kg/s or
: Positions | - 'M. PLRgy, < 95—1% and PLRgyy > 95+ 1%)
| 1 3 CW Loop Control PLRcy; <95 —1% for30s
1 WSE Valve ! Wetbulb : : for30s
. WSE Subsystem Positions : Temperature i
1 i
I : > Expansion Tank ! |
1 i
| CHW Bypass \(/; TZP}Z};E?;S; : i 1 I
1 P R
1 =gl
| o ¢ State Graph
I i .
)'r CHW Pump CHW Pump CHW Pump | Setpoint CW Pumps | C‘;j’ilt‘g‘gggz‘;zrs a e ra p
| Staging Subsystem Valve Positions : [ ! Cooling Mode
1 1 Co!
| i - CW L
I . T Shiller Chillers with 0P
1 . | aging Parallel WSE
P 1 I::l
1 " - ! Expansion Tank
Ly | CW Loop Cooling Towers Cooling Tower 1 . -
| Staging with Bypass Fan Speed 1 o C h I I I e r Stag I n g
1 ! Total District
1 I Mass Flow Rate
1 | | Cooling Tower : >
I Valve Positions | J EEBCephioot
: 1 Cooling Mode d ot
1 ! 7
. L] CW Bypass 1 —
| Valve Position 1 = ]
1 & ] & chione
1 ® )
g, 3 5
Lh CW Pump CW Pump CW Pump : g H :
Staging Subsystem Speeds | R M
s Ilow
1 Stage
1 % chiTwo
1 L | CWPump Valve X g 1
1 Position |
1 booTolnt
——————————————— CWLoop === === === = === =] o B
- B 1
CHW supply to district CHW return from district Tl g I 2 "o ‘ addint
2
Flow Rate pir g ? g - ¥
E booTolnt1 +1
: "2
k=1/GEva_nominal 2 & 2
S 0




Distribution Network




Buildings with Energy Transfer Station




Validation of Models

CVRMSE (Coefficient of Variation of the

Location CVRMSE (%) NMBE (%) Root Mean Square Erro r)
Acceptable range: [0,30%] Acceptable range: [-10,10%]
Qcrw meaw Terws Teawr Qcmw meaw Tenws Terwr Z(JJ\};—_fl)z
Plant 18.8 12.9 0.3 0.2 9.7 7.4 -0.1 -0.1 CVRMSE — )—) —
Chiller 22.2 15.5 0.2 0.3 8.7 7.4 -01 -0.1
Building 1 2.2 0.7 0.2 0.2 0.04 1.1 0.1 0.2 NOI’mallzed Mean BIaS ErrOI’
Building 2 2.4 0.1 0.2 0.2 0.02 0.6 -0.01 -0.02
Building 3 3.6 0.4 0.3 0.3 0.02 0.8 0.2 0.2 MBE z (yl - Jl)l)
Building 4 13 0.7 0.2 0.2 002  -01 0.04 0.04 N B (N — 1) y
Building 5 1.6 0.4 0.2 0.2 0.04 0.4 0.08 0.07
Building 6 2.2 0.5 0.2 0.2 -0.05 0.5 0.01 0.01

Acceptable range is based on ASHRAE Guideline 14



Model-Based System Optimization

« Condenser Water Supply Temperature
« Condenser Water Flow Rate
» Waterside Economizer
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CW Supply Temperature Setpoint Optimization

Optimization Problem

/ Total plant energy

min_ EPla,i (TCW,Set (x))
x€|x,x]

Condenser water supply
temperature setpoint
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Results of Optimizing Condenser Water Supply Temperature

TCW,set(xl) = X1

Tew ser(x1) =Ty + x4,

Tew ser(X1,%2) = Typ + X1 + x5 PLR

Table 4

Condenser water supply temperature optimization results.
Case Optimized x Energy Savings

Variable Value (MWh) (%)
Baseline (no optimization) X 15.6 °C 551.8 -
Fixed T¢y, .., X, 18.7 °C 537.9 2.5
Fixed T,,, X 1.9 °C 527.5 4.4
: X 2.1 °C

Adjusted T,,, xz _0.44 527.5 4.4
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Summary of Results
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In baseline, pumps contribute significantly to site energy use
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Summary of Results: Condenser water pump flow reduction
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15.3% reduction in Energy

 4.4% reduction in Peak Load
 8.9% reduction in Cost

15.0% reduction in CO, emission
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Conclusion

» Developed open source models for the Modelica Buildings
for the design and operation of district cooling systems

« Case study shows significant reductions in terms of
energy (15.3%), cost (8.9%) and CO, emission (15%).
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Wangda Zuo, Ph.D.

Email: wangda.zuo@psu.edu

Kathryn Hinkelman

Email: khinkelman@psu.edu
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