Model-Based Optimization for a Campus District Cooling System

Kathryn Hinkelman¹, Jing Wang², Wangda Zuo^{1,2}, Antoine Gautier³, <u>Michael Wetter³</u>, Chengliang Fan⁴, Nicholas Long²

¹ Pennsylvania State University, University Park, PA, USA
 ² National Renwable Energy Laboratory, Golden, CO, USA
 ³ Lawrence Berkeley National Laboratory, Berkeley, CA, USA
 ⁴ Guangzhou University, Guangzhou, China

- Background and motivation
- Models for district cooling systems
- Case study
- Conclusion

Why District Cooling?

- Space cooling is growing faster than any other building end use¹
- None had modeled complete district cooling systems (plant + distribution) featuring hydraulics nor waterside economizers

Gaps in Scientific Literature

• District cooling studies are generally limited

Objectives

- Demonstrate how Modelica can enable complete district cooling energy analysis
- Identify investment-free energy efficiency strategies for a real-world case study
- Evaluate carbon and operational cost savings due to energy retrofits

Case Study

- A satellite campus of University of Colorado in Boulder, CO
- Six Buildings:
 - Floor area: 93,990 m² (1,011,699 ft²)
 - Peak load: 2.4 MW
- Radial network with 1.5 km pipes

Central Plant

• Four cooling tower units (22 kW each)

Central Plant

• Four cooling tower units (22 kW each)

Modeling: District Cooling Systems

System Schematics

Top-Level Model

Central Plant

Central Plant

Control Layer 1: Cooling Mode Control

Control Layer 2: Chiller Staging Control

Distribution Network

Buildings with Energy Transfer Station

Location	CVRMSE (%)				NMBE (%)			
	Acceptable range: [0,30%]				Acceptable range: [-10,10%]			
	\dot{Q}_{CHW}	\dot{m}_{CHW}	T_{CHWS}	T_{CHWR}	\dot{Q}_{CHW}	\dot{m}_{CHW}	T_{CHWS}	T_{CHWR}
Plant	18.8	12.9	0.3	0.2	9.7	7.4	-0.1	-0.1
Chiller	22.2	15.5	0.2	0.3	8.7	7.4	-0.1	-0.1
Building 1	2.2	0.7	0.2	0.2	0.04	1.1	0.1	0.2
Building 2	2.4	0.1	0.2	0.2	0.02	0.6	-0.01	-0.02
Building 3	3.6	0.4	0.3	0.3	0.02	0.8	0.2	0.2
Building 4	1.3	0.7	0.2	0.2	-0.02	-0.1	0.04	0.04
Building 5	1.6	0.4	0.2	0.2	0.04	0.4	0.08	0.07
Building 6	2.2	0.5	0.2	0.2	-0.05	0.5	0.01	0.01

CVRMSE (Coefficient of Variation of the Root Mean Square Error)

Normalized Mean Bias Error

NMBE =
$$\frac{\sum (y_i - \hat{y}_i)}{(N-1)\bar{y}}$$

Acceptable range is based on ASHRAE Guideline 14

Model-Based System Optimization

- Condenser Water Supply Temperature
- Condenser Water Flow Rate
- Waterside Economizer

CW Supply Temperature Setpoint Optimization

Optimization Problem

Setpoint Methods

Results of Optimizing Condenser Water Supply Temperature

$$T_{CW,set}(x_1) = x_1,$$

$$T_{CW,set}(x_1) = T_{wb} + x_1,$$

$$T_{CW,set}(x_1, x_2) = T_{wb} + x_1 + x_2 \text{ PLR}$$

Table 4

Condenser water supply temperature optimization results.

Case	Optimized x		Energy	Savings	
	Variable	Value	(MWh)	(%)	
Baseline (no optimization)	<i>x</i> ₁	15.6 °C	551.8	_	
Fixed $T_{CW,set}$	x_1	18.7 °C	537.9	2.5	
Fixed T _{app}	x_1	1.9 °C	527.5	4.4	
$\Delta divised T$	<i>x</i> ₁	2.1 °C	527 5	ΔΔ	
	<i>x</i> ₂	-0.44	547.0		

Summary of Results

In baseline, pumps contribute significantly to site energy use

Summary of Results: Condenser water pump flow reduction

- 15.3% reduction in Energy
- 4.4% reduction in Peak Load
- 8.9% reduction in Cost
- 15.0% reduction in CO₂ emission

- Developed open source models for the Modelica Buildings for the design and operation of district cooling systems
- Case study shows significant reductions in terms of energy (15.3%), cost (8.9%) and CO₂ emission (15%).

<u>Reference</u>

K. Hinkelman, J. Wang, W. Zuo, A. Gautier, M. Wetter, C. Fan, N. Long. 2022. "Modelica-Based Modeling and Simulation of District Cooling Systems: A Case Study." Applied Energy, 311, pp.118654.

Wangda Zuo, Ph.D.

Email: wangda.zuo@psu.edu

Kathryn Hinkelman

Email: khinkelman@psu.edu