

DEPARTMENT OF MECHANICAL ENGINEERING THE ERIK JONSSON SCHOOL OF ENGINEERING & COMPTIER SCIENCE AT THE UNIVERSITY OF TEXAS AT DALLAS

Hybrid Model Predictive Control of Chiller Plant with Thermal Energy Storage Evaluated with Modelica-Python Co-Simulation

Chao Pan

Yaoyu Li

Department of Mechanical Engineering University of Texas at Dallas

October 27, 2022

Outline

- Background: Demand Response for Chiller Plant System
- Challenges and Proposed Work
- Chiller Plant with Water Storage: System Configuration & Modelica Dynamic Simulation Model
- Control-oriented Modeling: Koopman Models & Model Selection
- Hybrid Model Predictive Control for Demand Response Operation
- Simulation Study with Python-Modelica Co-Simulation Platform

Background

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).

U.S. primary energy consumption by energy source, 2021

Average Day (Time)

- Significant share of building energy consumption and electricity use
- Grid stability under increasing penetration of renewable energy

- Development of Gridinteractive Efficient Buildings
- Demand response and ancillary services by building HVAC operation

Data source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2022, preliminary data

Cia Note: Sum of components may not equal 100% because of independent rounding.

D THE UNIVERSITY OF TEXAS AT DALLAS

Review of Existing Work

Two key challenges:

- significant nonlinearities of plant characteristics are present;
- continuous and discontinuous manipulated variables coexist, due to the on/off and/or staged operation of some actuating devices in addition to the continuously adjustable devices.

Existing solution:

- Conventional scheduling techniques
- Operation shift with Thermal Energy Storage
- ➢ Piecewise linearization
- > Mixed-integer linear programming model predictive control (MILP-MPC) strategy

M. Fadzli Haniff, H. Selamat, R. Yusof, S. Buyamin, and F. Sham Ismail, "Review of hvac scheduling techniques for buildings towards energy-efficient and cost-effective operations," Renewable and Sustainable Energy Reviews, vol. 27, pp. 94–103, 2013.

M. J. Risbeck, C. T. Maravelias, J. B. Rawlings, and R. D. Turney, "A mixed-integer linear programming model for real-time cost optimization of building heating, ventilation, and air conditioning equipment," Energy and Buildings, vol. 142, pp. 220–235, 2017.

Proposed Work

Motivations:

- Demand responds for energy saving
- Global optimization with mixed-integer nonlinear programming MPC

• Chiller plant with thermal energy storage (TES) system

- Data-driven control-oriented model with Koopman operators for different operation modes
 - Hybrid dynamical system with mode switch (mixed-integer bilinear term)
- Model predictive control on temperature regulation and minimization power consumption

• Convexification for mixed-integer bilinear term (facilitate computing)

Mixed-integer bilinear programming \rightarrow mixed-integer linear programming

Dynamic Simulation Plant

• Modelica dynamic simulation plant: a chiller plant with thermal energy storage

Components

- Scroll compressor (4 L displacement)
- A counter flow wet cooling tower
- A shell and tube condenser
- A shell and tube evaporator
- A stratified tank for thermal energy storage
- Refrigerant: R134a

1: EEV opening → superheat
 2: compressor speed → leaving water
 temperature

Fig. 1. Schematic for Chiller Plant Coupled with Thermal Energy Storage

Dymola Layout for Chiller Plant and TES

Base on TLK library:

Ę

T.-T. GmbH. TIL Suite. [Online]. Available: https://www.tlkthermo.com/index.php/en/til-suite

Base on Building library:

M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, "Modelica Buildings library," Journal of Building Performance Simulation, vol. 7, no. 4, pp. 253–270, 2014.

Dassault Systèmes, (2019), Dymola. Available: http://www.3ds.com/products/catia/portfolio/dymola.

Illustration for Two Operation Modes

Mode 1: TES Charging

- TES charged by chiller water from chiller plant
- Building load (AHU) handled by chilled water from chiller plant
- Building/AHU return water + TES outlet water, \rightarrow chiller plant

Mode 2: TES Discharging

- TES discharges chiller water to AHU
- AHU supplied chill water comes from Chiller Plant and TES
- The AHU return water \rightarrow the TES and Chiller Plant

Control-oriented Model for Chiller Plant with Water Storage

States:

- Chiller plant related states:
- \succ compressor discharged pressure (P_{cd})
- \succ compressor discharge temperature (T_{cd})
- \succ compressor suction pressure (P_{cs})
- Building load/AHU related state:
- > chilled-water return temperature (T_r)
- Thermal energy storage related states:
- > top- and bottom-layer water temperatures (T_a and T_b)

Disturbance:

- > ambient temperature (T_{amb})
- \succ building load (\dot{Q}_{ld}),

Inputs:

- \succ tower fan speed (\dot{m}_{tf})
- > chiller evaporator leaving water setpoint (T_{lwSP})
- > chiller evaporator water mass flow rate (\dot{m}_{ew}) ,

mode switch input: $\delta \in \{0, 1\}$, where 0 represents Mode 1 and 1 represents Mode 2

Power consumption(*P*_t):

- compressor power (P_{cmp})
- > tower fan power (P_{tf})
- evaporator liquid pump power(Ppmp)

Data-driven model with Koopman operators for Mode 1&2

Original States:

$$x = [P_{cd}, T_{cd}, P_{cs}, T_r, T_a, T_b]^T$$

Inputs:

$$u = [\dot{m}_{tf}, T_{lwSP}, \dot{m}_{ew}]^T$$

Disturbance:

 $w = [T_{amb}, \dot{Q}_{ld}]^T$

Discrete-time dynamic system: $x_{k+1} = F(x_k, u_k, w_k)$

finite-dimensional lifted space $z_{k+1} = Az_k + B_u u_k + B_w w_k$ $\hat{x}_k = Cz_k$ \clubsuit Kernel function $z \triangleq \boldsymbol{\psi}(x) = [\psi_1(x) \quad \cdots \quad \psi_N(x)]^T$

 In this study, the original states x are affined into the 1storder, 2nd-order polynomial functions and their cross terms.

$$z = [x_1, \ldots, x_6, x_1^2, \ldots, x_6^2, x_1x_2, \ldots, x_5x_6]^T$$

Sparse Identification of Nonlinear Dynamics with Control (SINDYc)

$$z = [x_1, \dots, x_6, x_1^2, \dots, x_6^2, x_1x_2, \dots, x_5x_6]^T$$

$$\operatorname{argmin}_{A,B} \|\Xi_+ - A\Xi - B_u \mathbf{U} - B_w \mathbf{W}\|_2$$

$$\operatorname{Mode 1:} z_{k+1}^1 = A^1 z_k^1 + B_u^1 u_k^1 + B_w^1 w_k^1$$

$$\operatorname{Mode 2:} z_{k+1}^2 = A^2 z_k^2 + B_u^2 u_k^2 + B_w^2 w_k^2$$

$$\cdot \text{Typical Akaike Information Criterion (AIC) for polynomial functions} \qquad \operatorname{Alsize, H} (1969). \text{Fitting antergenetive models for prediction. Another back State. Model}, z_{101, 249-247}^{AIC}$$

$$\operatorname{Residual Sum of Squares for fitting error}_{AIC Score \longrightarrow AIC} = \rho \cdot \ln \left(\frac{RSS}{\rho} + 2p\right)^{-1} \text{Maximum likelihood function}}$$

$$\cdot \text{ AIC with correction (AICc) for small sample size: } AIC_c = AIC + \frac{2(p+1)(p+2)}{(p-\rho-2)}$$

$$\cdot \text{ The total power model for two modes is identified as a static map of all states, inputs and disturbances.}$$

$$\operatorname{Mode 2:} y_k^2 = C^2 z_k^2 + D_u^2 u_k^2 + D_w^2 w_k^2$$

Model Selection Results for Mode 1 (600s sampling time)

D THE UNIVERSITY OF TEXAS AT DALLAS

Model Selection Results for Mode 2 (600s sampling time)

Hybrid system model by mixed dynamical system

$$z_{k+1} = \begin{cases} A^{1}z_{k} + B^{1}_{u}u_{k} + B^{1}_{w}w_{k}, & \delta_{k} = 0, \\ A^{2}z_{k} + B^{2}_{u}u_{k} + B^{2}_{w}w_{k}, & \delta_{k} = 1. \end{cases}$$
$$y_{k} = \begin{cases} C^{1}z_{k} + D^{1}_{u}u_{k} + D^{1}_{w}w_{k}, & \delta_{k} = 0, \\ D^{2}z_{k} + D^{2}_{u}u_{k} + D^{2}_{w}w_{k}, & \delta_{k} = 1. \end{cases}$$

Mixed-integer dynamic model with bilinear terms

$$z_{k+1} = (A^1 - A^2) z_k \delta_k + (B^1_u - B^2_u) u_k \delta_k + (B^1_w - B^2_w) w_k \delta_k + A^2 z_k + B^2_u u_k + B^2_w w_k$$

$$y_{k} = (C^{1} - C^{2})z_{k}\delta_{k} + (D_{u}^{1} - D_{u}^{2})u_{k}\delta_{k} + (D_{w}^{1} - D_{w}^{2})w_{k}\delta_{k} + C^{2}z_{k} + D_{u}^{2}u_{k} + D_{w}^{2}w_{k}$$

HMPC for Chiller Plant with Water Storage

HMPC design problem: minimizing energy cost while regulating AHU return water temperature requirements, assuming perfect knowledge of future ambient temperature and cooling load

Convexification for bilinear programming

Define the new variables of bilinear functions

$$f_z(z,\delta) = z\delta$$
 $f_u(u,\delta) = u\delta$

Convex hulls

$$conv(\mathcal{S}_{z,i}) = \{ (z_i, \delta, f_{z,i}) \in (\mathbb{R} \times \mathbb{I} \times \mathbb{R}) | \mathcal{F}_{z,i} \}$$
$$conv(\mathcal{S}_{u,j}) = \{ (u_j, \delta, f_{u,j}) \in (\mathbb{R} \times \mathbb{I} \times \mathbb{R}) | \mathcal{F}_{u,j} \}$$

$$\mathcal{F}_{z} = \begin{cases} f_{z} \geq z^{lb}\delta + \delta^{lb}z - z^{lb}\delta^{lb} \\ f_{z} \geq z^{ub}\delta + \delta^{ub}z - z^{ub}\delta^{ub} \\ f_{z} \leq z^{lb}\delta + \delta^{ub}z - z^{lb}\delta^{ub} \\ f_{z} \leq z^{ub}\delta + \delta^{lb}z - z^{ub}\delta^{lb} \end{cases}$$
$$\mathcal{F}_{u} = \begin{cases} f_{u} \geq u^{lb}\delta + \delta^{lb}u - u^{lb}\delta^{lb} \\ f_{u} \geq u^{ub}\delta + \delta^{ub}u - u^{ub}\delta^{ub} \\ f_{u} \leq u^{lb}\delta + \delta^{ub}u - u^{lb}\delta^{ub} \\ f_{u} \leq u^{ub}\delta + \delta^{lb}u - u^{lb}\delta^{ub} \\ f_{u} \leq u^{ub}\delta + \delta^{lb}u - u^{ub}\delta^{lb} \end{cases}$$

MILP-MPC

$$\min_{\substack{u,\delta,f_z,f_u}} \left[\sum_{k=0}^{N_p-1} (q_{\delta}^T f_{z,k} + r_{\delta}^T f_{u,k} + p_{\delta}^T w_k \delta_k + q_z^T z_k + r^T u_k + p_{\delta}^T w_k + q_z^T z_k + r^T u_k + p_{\delta}^T w_k + q_z^T z_k + r^T u_k + p_{\delta}^T w_k + q_z^T z_k + r^T u_k + q_z^T z_k + r^T u_k$$

s.t.

$$z_{k+1} = A^3 f_{z,k} + B^3_u f_{u,k} + B^3_w w_k \delta_k$$

+ $A^2 z_k + B^2_u u_k + B^2_w w_k$
 $z^{lb}_k \leq z_k \leq z^{ub}_k, u^{lb}_k \leq u_k \leq u^{ub}_k$
 $z_0 = z_{ini}$
 $k \in \mathbb{I}_{[0,N_p)}$

Hybrid Model Predictive Control with mixed-integer bilinear programming (HMPC-MIBLP)

- Dymola: Modelica model of Chiller Plant with Water Storage
- Python: MPC design and implementation

FMI 2.0 Co-simulation

https://fmi-standard.org/

Simulation setting

- Sampling time : 600s
- Predictive horizon : 2 hours
- Initial tower fan speed: 40 Hz
- Initial chiller leaving water temperature setpoint: 10 °C
- Initial chiller plant water mass flow rate: 11 kg/s
- Initial TES charging/discharging mode: 1 (discharging)
- Initial ambient temperature: 28 °C
- Initial cooling load on AHU cooling coil: 360 kW

Utilized Python package:

Created on Sat Sep 17 14:54:36 2022
@author: cxp161130 """
import cvxpy as cp
import numpy as np
import scipy as sp
from scipy import sparse
<pre>import matplotlib.pyplot as plt</pre>
<pre># from matplotlib.patches import StepPatch</pre>
import shutil
import scipy.io as scio
import time
<pre>from fmpy import read_model_description, extract</pre>
from fmpy.fmi2 import FMU2Slave

Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for covex optimization. *J. Machine Learning Res.*, 17(83), 1–5. https://doi.org/10.48550/arXiv.1603.00943.

T. Sommer, FMPy, (2020). Available online: https://github.com/CATIA-Systems/FMPy.

low-price region (LPR: [0, 14.5] hour) medium-price region (MPR: [14.5, 17.5] hour) high-price region (HPR: [17.5, 24] hour)

Oscillation due to mode switch and inner PI controllers

Conclusion

- We propose a data-driven method of Chiller plant coupled with chilled-water storage.
- The SINDYc-based Koopman-invariant subspace models are identified with simulations data from Modelica-based dynamics model.
- A MIBLP-MPC is formulated for global optimization of energy saving and satisfication of cooling rate demand.
- To solve this optimization problem, a convexification with McCormick envelopes is implemented and transformed the MIBLP into MILP.
- The proposed control strategy is evaluated with Python-based cosimulation framework.

Acknowledgments

• TLK-Thermo is appreciated for their permission to access TIL Suite software and technical assistance

Thanks!

Any Questions?