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Outline

* Background: Demand Response for Chiller Plant System

* Challenges and Proposed Work

* Chiller Plant with Water Storage: System Configuration & Modelica
Dynamic Simulation Model

* Control-oriented Modeling: Koopman Models & Model Selection
* Hybrid Model Predictive Control for Demand Response Operation

e Simulation Study with Python-Modelica Co-Simulation Platform
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Presenter Notes
Presentation Notes
First, I will talk about the background of demand response for chiller plant system; then I will talk about the current challenges and our proposed work for this study. A Modelica-based chiller plant with water storage is built in Dymola. A data-driven control-oriented modeling with Koopman operators and model selection is discussed. HMPC is design. Co-simulation with FMI based on python is studied


U.S. Energy Use o

.. —Buildings 40% I compe 3%
— W cooking3%
[ e ectronics 45
I vt ciean 4

Refrigeration 6%

Cooling 14%

Lights 8%

Water Heating 14%

Healing 29%

Transportation
28%

Other 15%

Computers 4%

1
§

R
)
®

Commercial
18%

Electronics 6%

Refrigeration 7%

Cooling 10%

Lights 20%

Water Heating 5%

Industry
32%

Heating 17%

Ventilation 10%

Other 19%

U.S. primary energy consumption by energy source, 2021

total = 97.33 quadrillion total = 12.16 quadrillion Btu
British thermal units (Btu)

e 2% - geothermal

nuclear 12% - solar

electric
. 19% - hydroelectric

power
8% [LE]
27% - wind

1%

petroleum
36%

renewable
energy 12%

4% - biomass waste

19% - biofuels biomass
40%

- 17% - WOOd

Data source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1,
6 April 2022, preliminary data
€1a’ Note: Sum of components may not equal 100% because of independent rounding.

natural
gas

32%

Background

Building Operations

Industry 74.9%
24.9% (9.5 QBtu) (28.6 QBtu)
Transportation

<1% (.1 QBtu)

U.S. Electricity Consumption by Sector

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved.
Data Source: U.S. Energy Information Administration (2012).

Automated Demand Response

esee
ADR Event
Usage

Communication

Electricity Usage kN —————

Average Day (Time) —’

= Significant share of building
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electricity use

= Grid stability under increasing
penetration of renewable
energy

= Development of Grid-
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= Demand response and
ancillary services by building
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Presenter Notes
Presentation Notes
Currently, about 40 % energy is used by buildings in U.S. in the meantime, building operations consumed about 75% U.S. electricity . The demand response becomes more and more important.


Review of Existing Work

Two key challenges:
* significant nonlinearities of plant characteristics are present;

 continuous and discontinuous manipulated variables coexist, due to the on/off and/or staged
operation of some actuating devices in addition to the continuously adjustable devices.

Existing solution:

* Conventional scheduling techniques

* Operation shift with Thermal Energy Storage

» Piecewise linearization

» Mixed-integer linear programming model predictive control (MILP-MPC) strategy

M. Fadzli Haniff, H. Selamat, R. Yusof, S. Buyamin, and F. Sham Ismail, “Review of hvac scheduling techniques for buildings towards energy-efficient and cost-effective

operations,” Renewable and Sustainable Energy Reviews, vol. 27, pp. 94-103, 2013.
M. J. Risbeck, C. T. Maravelias, J. B. Rawlings, and R. D. Turney, “A mixed-integer linear programming model for real-time cost optimization of building heating,

ventilation, and air conditioning equipment,” Energy and Buildings, vol. 142, pp. 220-235, 2017.
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Presenter Notes
Presentation Notes
In the optimization of chiller plant. There are two mainly challenges: 1 the high nonlinear dynamics and 2 the continuous and discontinuous manipulated variables due to on/off or more. Some existing solution are conventional scheduling techniques. And co-operated with thermal energy storage for load shift with some control strategy. E.g. mixed-integer linear programming mpc with linear model.


Proposed Work

Motivations:
» Demand responds for energy saving
» Global optimization with mixed-integer nonlinear programming MPC

* Chiller plant with thermal energy storage (TES) system

¢

* Data-driven control-oriented model with Koopman operators for different operation modes

‘

* Hybrid dynamical system with mode switch (mixed-integer bilinear term)

¢

* Model predictive control on temperature regulation and minimization power consumption

@

» Convexification for mixed-integer bilinear term (facilitate computing)

Mixed-integer bilinear programming — mixed-integer linear programming
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Presenter Notes
Presentation Notes
In this study, we built a Modelica-based model of chiller plant with TES on Dymola. It can operate two modes where TES charging and discharging. Then, a data-driven model is derived with linearization form by Koopman operators for different modes. The mixed dynamical system is built with mode switch. Then the final dynamic model contains the mixed-integer bilinear terms. A HMPC is designed for two targets, temperature regulation and power minimization. Since the optimization problem is a mixed-integer bilinear programming, a convexification method is used to transform the problem into mixed-integer linear programming, which has benefit in computing speed.


Dynamic Simulation Plant

* Modelica dynamic simulation plant: a chiller plant with thermal energy storage

Components Tower Fan Cooling-tower water ———
* Scroll compressor (4 L displacement) mb _ \ Chillrrefrigerant  ————
. RH Myf “ Chiller leaving water ——
* A counter flow wet cooling tower Cooling Tower Chiller return water ~ ————
TES charge water —_—————
A shell and tube condenser TES discharge water  — — — — —»
* A shell and tube evaporator Building supply water — . ——- -
. Building return water — — — c—
A stratified tank for thermal energy storage ) p
. Condenser T“‘ Tompb
* Refrigerant: R134a ?omp_ cd — | RH
EEV d -- - .S
i | —T ;
Ty Z; ——Toi P, | |7 b ! A
. Evaporator : | I (&
| : | Tr =~
, Qua

1: EEV opening — superheat
2: compressor speed — leaving water
temperature

Building
AHU

Fig. 1. Schematic for Chiller Plant Coupled with Thermal Energy Storage
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Presenter Notes
Presentation Notes
The simulation plant includes a chiller plant model, a water storage model, and a simplified building AHU model, where cooling load comes from energyplus…. Two PI controllers are …..


TowerAirFlowlnputHumidiy

.
T
D

TowerAirFlowlngutTemperature: Ciiset

statet

state2

const

k=273.15 + 25

Dymola Layout for Chiller Plant and TES

temperatureSensor1

K

temperatureSensor

fan senMasFlo tan

sim res_1

mout

mout switch1
> \ <
T—>—< N b 4—‘

)

k=273.15 + 6.6] switch2

TotalPower

const2

Base on TLK library:

T.-T. GmbH. TIL Suite. [Online]. Available: https://www.tlk-
thermo.com/index.php/en/til-suite

Base on Building library:
M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, “Modelica Buildings library,”
Journal of Building Performance Simulation, vol. 7, no. 4, pp. 253-270, 2014.

Dassault Systémes, (2019), Dymola. Available: http://www.3ds.com/products/catia/portfolio/dymola.
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Presenter Notes
Presentation Notes
These are Dymola layout for chiller and TES, which are modified based on TIL library and stratified tank model from building library


lllustration for Two Operation Modes

Mode 1: TES Charging Mode 2: TES Discharging

* TES charged by chiller water from chiller plant * TES discharges chiller water to AHU

 Building load (AHU) handled by chilled water from * AHU supplied chill water comes from Chiller Plant and
chiller plant TES

 Building/AHU return water + TES outlet water, — * The AHU return water — the TES and Chiller Plant
chiller plant

III-D THE UNIVERSITY OF TEXAS AT DALLAS


Presenter Notes
Presentation Notes
Two operation modes on revised TES water flow direction….. Mode 1: Mode 2


Control-oriented Model for Chiller Plant with Water Storage

e Chiller plant related states: > tower fan speed (1, )

> compressor discharged pressure (Pcq) » chiller evaporator leaving water setpoint (7},,sp)
> compressor discharge temperature (T;) » chiller evaporator water mass flow rate (1m,,,),
» compressor suction pressure (P.)

* Building load/AHU related state: : :

» chilled-water return temperature (7;.) mode switch Input: 6 € {0, 1},

« Thermal energy storage related states: where 0 represents Mode 1 and 1

> top- and bottom-layer water temperatures (T, and T}) represents Mode 2

Power consumption(P;):

» compressor power (F,,)

» tower fan power (P;)

» evaporator liquid pump power(F,;,,)
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Disturbance:
» ambient temperature (T,;,,p)
> building load (Q,,),




Data-driven model with Koopman operators for Mode 1&2

Original States: finite-dimensional lifted space

v = [P, Teay Pes, Tr, T, Tp)* ey = Azy + B + Bywy,
Inputs: X, = Cz,

w=[res, Tiwsp, Mew)’ \ 4
Disturbance: Kernel function |z 2 ¥ (x) = [{1(x) - Py)]"

w = [Tomp, Qualr

* In this study, the original states x are affined into the 1st-

Discrete-time dynamic system: x;., = F(x, ug, wy) order, 2nd-order polynomial functions and their cross
terms.
Koopman operator \
— 2 2 T
g =goF z = [z, ..., T, X, ..., TG, T1To, ..., T5T¢]

I

infinite-dimensional function space
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Sparse ldentification of Nonlinear Dynamics with Control (SINDYc)

o= [z, ..., wg, 22, ..., 22, 2y@0, ..., 25767 argmin||E, — AE — B,U — B, W|,
AB
Mode 1: Z;};H:Alzé—l—Bqﬁui-l-Bguwi e - o .
LASSO: arg;mnllﬂrs‘j(ﬂ”n - B + V|€]l,

Mode 2: zﬁﬂ = A%2; + B2ui + B2 wy

- Typical Akaike Information Criterion (AIC) for polynomial functions  akike 11969 Fiting sutoregressive models for

prediction. Annals. Inst. Stat. Math., 21(1), 243-247.

Model
Complexity

Residual Sum of Squares for fitting error N
rrr ! # of model parameters

‘RSS! o
AIC Score —AIC =p-In|— ]+ 2p

Sample size O N +— Maximum likelihood function

2+ D+ 2)
p-p—2)

- AIC with correction (AICc) for small sample size: AIC, = AIC +

1 _ ~1.1 1.1 1.1
* The total power model for two modes is identified as a Mode 1: Y = ¢ 2t Duuk + wak

static map of all states, inputs and disturbances. 5 5 9 5 o 5 9
Mode 2: Yr = 7z + Djuy + Dy wy,
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Model Selection Results for Mode 1 (600s sampling time)

— Variable RMSE

5 1 | | | | | | |

2 8

f 5 | | | | | | | P4 (bar) 0.0167
0 5 10 15 20 25 30 35 40 .

559 | | | | | | | T.q4 (°C) 0.0111

44

~ 29 ' | | | | | | P (bar) 0.0183
0 5 10 15 20 25 30 35 40

538 | | | | | | | T, (°C) 0.0482

<33 WV\NW\WWMMVWWWMWW

Q:S 28 | | | | | | | T, (°C) 0.0035
0 5 10 15 20 25 30 35 40

SSO | | | | | | | ] T, (°C) 0.0038

<30 : ‘ :

&~ 10 | | | | | | | - No*
0 5 10 15 20 25 30 35 40

) 13 | | | | ! | | Al 333

~ 6 | | | | | | | 1
0 5 10 15 20 25 30 35 40 By // 6

12

S BT — S —— e N -4 I

= 6 | | | | | | | " )
0 5 10 5 20 25 30 35 [—Experiment/40 The nufmber of null elements in

Time (hour) ---Estimated identified coefficients

Z

About half elements in A
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Model Selection Results for Mode 2 (600s sampling time)

g I ‘ ‘ \ \ \ | \ Variable RMSE
=
=
> 5 | | | | | | | P.. (bar 0.0157
S 0 5 10 15 20 25 30 35 40 cd ( )
oY | | | | | | | Teq (°C) 0.0088
\—.544 -
=99 | | | | | | |
0 5 10 15 20 25 30 35 40 Fes (bar) 0.0138
38
'§ 3.3 %WMWNWWWW I (°C) 0.0033
8 238 \ \ \ \ \ \ \ .
w28 5 10 15 20 25 30 35 40 Ty (°C) 0.0048
500 | | | | | | | X
SENE T, (°C) 0.0040
&~ WMWWM‘M
B~ 10 "
0 5 10 15 20 25 30 35 40 - NO
20 | | | \
8 16 - Al 267
= 12 \ \ \ \ \ \ \
0 5 10 15 20 25 30 35 40 B& 4
20
S | | | D e ——— S
< 16 /"/_',—__“_J\/ By 5
K 12 | | | | | | |
0 3 10 15 20 25 30 35 |—Experiment/40 * The number of null elements in
Time (hour) —Estimated identified coefficients
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Hybrid system model by mixed dynamical system

= —
i AQZ;{ + Bﬁuk + vawk, 0 = 1.

B Clzk + Diuk + D%U’wk) 0 = 0,
k= D2z, + D%y, + D2 wy, ), = 1.

¥

_ 1 2 1 2
Mixed-integer dynamic Zher =(A°— A jzkék + (B, — Bu)l“kzék‘l‘
model with bilinear terms (B, — B2 wiold + A%z, + B2uy, + B2 w;,

Yk :(Cl — CQ 2O + (Di — Di)ukék—l—
(D,}U — Dfu)lzﬂkék -+ ngk + Diuk + D,?U’wk
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HMPC for Chiller Plant with Water Storage

HMPC design problem: minimizing energy cost while regulating AHU return water
temperature requirements, assuming perfect knowledge of future ambient temperature and

cooling load
Electricity rate
. [§ ” il + Ni_:l ] Quadratic programming with
e £ kT Akl a Chlk mixed-integer bilinear terms
5.1 N,—1
Power model can . T T T T
Zhyl = A3 2.0, + Bﬁumk n Bfu’wkék be substituted into Tglgl[ kzo (q5 260k + 75 Wil + P5 WEOE + G5 2k

+ A%z + Biuk + Bi,wk
Y = C’szék — Diukék -+ Df’uwkék
+ CQZ!{: + Diuk + D%ka

2 < e < 2ty < g < ul

function
cost functio g+ plwg +pn) + 4z, + D)

s € [30,60]Hz
Tgwsp c [6.67,12.22]00

Mew € [8,12]kg/s
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Convexification for bilinear programming

Define the new variables of bilinear functions

£,(z,8) =26  f,(u,8)=us MILP-MPC
N,—1
Convex hulls u,glfiffu [ Z (q(;sz,k + :r(;Tf,UL,,zG - p'{wm + quzk + 7T,
conv(S, ;) ={(2:,6, f.:) € (R x I xR)|F,;} » R=0
conv(Su;) = {(u;,0, fu;) € R x I x R)|Fou;} +p"wi +pL) + (¢l 2n, +p1)
ick i iti ( Ib Ib b slb S
F. =4 £, < Jbs o gub, _ b gub + A%z, + B2y, + B2 wy,
. < 2906 4 5l — cubgih A<z <l <y <l
(fu 2 ulb5—|— 5lbu o ulbélb 20 = Zini
o fu > utS + §1by — b sub k e ]:[[OaNp)
b Fu < ul®6 4+ 540y — ulbsub
L fu < utbs + 6y — b st
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Hybrid Model Predictive Control with mixed-integer bilinear
programming (HMPC-MIBLP)

i ybrid MPC Python-based HMPC |
. i Reference "| cost Function [ i )
Q Dymola: Modelica model of i ; Qu Temy RH
Chiller Plant with Water Storage i Constraints —| CVXPY/GUROBI Contr&tﬂf"te‘j i EnergyPlus® ln\g‘:::g;n
O Python: MPC design and ; Futurellnputs i
implementation T Messred states oy
| 5 T B A
B
Co-simulation icd i ",;flt’]f s LT i | T Bu”:jing
sz L Chiller Plant | -I;ES B Lofd
|
|

: System Plant

T
z
A~

hel

h 4

I

i

|

i

i

|

I

I

i

i

|

https://fmi-standard.org/
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Co-Simulation Results for HMPC Operation

Simulation setting

Utilized Python package:

" Samp“ng time : 600s Created on Sat Sep
= Predictive horizon : 2 hours s e AL
= |nitial tower fan speed: 40 Hz cvxpy o= cp
= |nitial chiller leaving water temperature setpoint: 10 °C ccipy oo o

oy . scipy sparse
= |nitial chiller plant water mass flow rate: 11 kg/s B e IE Il e
= |nitial TES charging/discharging mode: 1 (discharging) shutil |

scipy.1lo sClo
= |nitial ambient temperature: 28 °C time .
Tmpy read model description, extract

= |nitial cooling load on AHU cooling coil: 360 kW UL s

Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for covex optimization. J. Machine Learning Res., 17(83), 1-5.
https://doi.org/10.48550/arXiv.1603.00943.

T. Sommer, FMPy, (2020). Available online: https://github.com/CATIA-Systems/FMPy.
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Co-simulation Results for HMPC Operation

1 —
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o 05 B . Di h I
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Co-simulation Results for HMPC Operation

12
=
S gl 7
]
4 ‘ ‘ ‘ —HMPC
0 > 10 15 —HMPC-Co
65 i \ \ \
€
= 40 i
=
15 | | | |
0 5 10 15 20
3.8 i T \ \
S Oscillation due to
=33 | )
X mode switch and
28 | | | ‘ inner Pl controllers
0 5 10 15 20

Time (hour)
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Co-simulation Results for HMPC Operation

22
S . &1‘ Regulated target:
m-—- g I - | —T °
<20 —HMPC 20.25 °C
&~ —HMPC-Co
18 | | | | Ref
0 5 10 15 20
12 | | | |
S) Wf T W —
S o= \4
=
6 \ \ \ \
0 5 10 15 20
12 | | | |
03 9Wf *kLﬁfL——f -
=
6 | | | |
0 5 10 15

Time (hour)
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Co-simulation Results for HMPC Operation

0L [ \
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[ [
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Conclusion

* We propose a data-driven method of Chiller plant coupled with
chilled-water storage.

* The SINDYc-based Koopman-invariant subspace models are identified
with simulations data from Modelica-based dynamics model.

* A MIBLP-MPC is formulated for global optimization of energy saving
and satisfication of cooling rate demand.

* To solve this optimization problem, a convexification with McCormick
envelopes is implemented and transformed the MIBLP into MILP.

* The proposed control strategy is evaluated with Python-based co-
simulation framework.
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