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Outline
• Background: Demand Response for Chiller Plant System

• Challenges and Proposed Work

• Chiller Plant with Water Storage: System Configuration & Modelica
Dynamic Simulation Model

• Control-oriented Modeling: Koopman Models & Model Selection

• Hybrid Model Predictive Control for Demand Response Operation

• Simulation Study with Python-Modelica Co-Simulation Platform
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Presenter Notes
Presentation Notes
First, I will talk about the background of demand response for chiller plant system; then I will talk about the current challenges and our proposed work for this study. A Modelica-based chiller plant with water storage is built in Dymola. A data-driven control-oriented modeling with Koopman operators and model selection is discussed. HMPC is design. Co-simulation with FMI based on python is studied



Background

 Significant share of building 
energy consumption and 
electricity use

 Grid stability under increasing 
penetration of renewable 
energy

 Development of Grid-
interactive Efficient Buildings

 Demand response and 
ancillary services by building 
HVAC operation
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Presenter Notes
Presentation Notes
Currently, about 40 % energy is used by buildings in U.S. in the meantime, building operations consumed about 75% U.S. electricity . The demand response becomes more and more important.



Review of Existing Work

Existing solution:
• Conventional scheduling techniques
• Operation shift with Thermal Energy Storage
Piecewise linearization
Mixed-integer linear programming model predictive control (MILP-MPC) strategy

M. Fadzli Haniff, H. Selamat, R. Yusof, S. Buyamin, and F. Sham Ismail, “Review of hvac scheduling techniques for buildings towards energy-efficient and cost-effective 
operations,” Renewable and Sustainable Energy Reviews, vol. 27, pp. 94–103, 2013.
M. J. Risbeck, C. T. Maravelias, J. B. Rawlings, and R. D. Turney, “A mixed-integer linear programming model for real-time cost optimization of building heating, 
ventilation, and air conditioning equipment,” Energy and Buildings, vol. 142, pp. 220–235, 2017.

Two key challenges:
• significant nonlinearities of plant characteristics are present;
• continuous and discontinuous manipulated variables coexist, due to the on/off and/or staged 

operation of some actuating devices in addition to the continuously adjustable devices.
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Presenter Notes
Presentation Notes
In the optimization of chiller plant. There are two mainly challenges: 1 the high nonlinear dynamics and 2 the continuous and discontinuous manipulated variables due to on/off or more. Some existing solution are conventional scheduling techniques. And co-operated with thermal energy storage for load shift with some control strategy. E.g. mixed-integer linear programming mpc with linear model.



Proposed Work

• Chiller plant with thermal energy storage (TES) system

• Data-driven control-oriented model with Koopman operators for different operation modes

• Hybrid dynamical system with mode switch (mixed-integer bilinear term)

• Model predictive control on temperature regulation and minimization power consumption

• Convexification for mixed-integer bilinear term (facilitate computing)
Mixed-integer bilinear programming → mixed-integer linear programming
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Motivations:
 Demand responds for energy saving
 Global optimization with mixed-integer nonlinear programming MPC

Presenter Notes
Presentation Notes
In this study, we built a Modelica-based model of chiller plant with TES on Dymola. It can operate two modes where TES charging and discharging. Then, a data-driven model is derived with linearization form by Koopman operators for different modes. The mixed dynamical system is built with mode switch. Then the final dynamic model contains the mixed-integer bilinear terms. A HMPC is designed for two targets, temperature regulation and power minimization. Since the optimization problem is a mixed-integer bilinear programming, a convexification method is used to transform the problem into mixed-integer linear programming, which has benefit in computing speed.



Dynamic Simulation Plant

• Modelica dynamic simulation plant: a chiller plant with thermal energy storage

Components
• Scroll compressor (4 L displacement)
• A counter flow wet cooling tower
• A shell and tube condenser 
• A shell and tube evaporator
• A stratified tank for thermal energy storage
• Refrigerant: R134a

1: EEV opening → superheat
2: compressor speed → leaving water 
temperature
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Presenter Notes
Presentation Notes
The simulation plant includes a chiller plant model, a water storage model, and a simplified building AHU model, where cooling load comes from energyplus…. Two PI controllers are …..



Dymola Layout for Chiller Plant and TES

Base on TLK library:
T.-T. GmbH. TIL Suite. [Online]. Available: https://www.tlk-
thermo.com/index.php/en/til-suite

Base on Building library:
M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, “Modelica Buildings library,” 
Journal of Building Performance Simulation, vol. 7, no. 4, pp. 253–270, 2014. 

Dassault Systèmes, (2019), Dymola. Available: http://www.3ds.com/products/catia/portfolio/dymola.
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Presenter Notes
Presentation Notes
These are Dymola layout for chiller and TES, which are modified based on TIL library and stratified tank model from building library



Illustration for Two Operation Modes

Mode 1: TES Charging
• TES charged by chiller water from chiller plant
• Building load (AHU) handled by chilled water from 

chiller plant
• Building/AHU return water + TES outlet water, →

chiller plant

Mode 2: TES Discharging
• TES discharges chiller water to AHU
• AHU supplied chill water comes from Chiller Plant and 

TES
• The AHU return water → the TES and Chiller Plant
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Presenter Notes
Presentation Notes
Two operation modes on revised TES water flow direction….. Mode 1: Mode 2



Control-oriented Model for Chiller Plant with Water Storage

States:
• Chiller plant related states:
 compressor discharged pressure (𝑃𝑃𝑐𝑐𝑐𝑐)
 compressor discharge temperature (𝑇𝑇𝑐𝑐𝑐𝑐)
 compressor suction pressure (𝑃𝑃𝑐𝑐𝑠𝑠)
• Building load/AHU related state:
 chilled-water return temperature (𝑇𝑇𝑟𝑟)
• Thermal energy storage related states:
 top- and bottom-layer water temperatures (𝑇𝑇𝑎𝑎 and 𝑇𝑇𝑏𝑏)

Inputs:
 tower fan speed (𝑚̇𝑚𝑡𝑡𝑡𝑡)
 chiller evaporator leaving water setpoint (𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
 chiller evaporator water mass flow rate (𝑚̇𝑚𝑒𝑒𝑒𝑒), 

Disturbance:
 ambient temperature (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
 building load (𝑄̇𝑄𝑙𝑙𝑙𝑙), 

mode switch input: δ ∈ {0, 1}, 
where 0 represents Mode 1 and 1 
represents Mode 2

Power consumption(𝑃𝑃𝑡𝑡):
 compressor power (𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐)
 tower fan power (𝑃𝑃𝑡𝑡𝑡𝑡)
 evaporator liquid pump power(𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝) 
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Data-driven model with Koopman operators for Mode 1&2
Original States:

Inputs:

Disturbance:

• In this study, the original states x are affined into the 1st-
order, 2nd-order polynomial functions and their cross 
terms.

Koopman operator

Discrete-time dynamic system:

infinite-dimensional function space

finite-dimensional lifted space

Kernel function
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Sparse Identification of Nonlinear Dynamics with Control (SINDYc)

• The total power model for two modes is identified as a 
static map of all states, inputs and disturbances.

Mode 1:

Mode 2:

Mode 1:

Mode 2:

LASSO:
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Model Selection Results for Mode 1 (600s sampling time)
Variable RMSE

𝑃𝑃𝑐𝑐𝑐𝑐 (bar) 0.0167

𝑇𝑇𝑐𝑐𝑐𝑐 (°C) 0.0111

𝑃𝑃𝑐𝑐𝑐𝑐 (bar) 0.0183

𝑇𝑇𝑟𝑟 (°C) 0.0482

𝑇𝑇𝑎𝑎 (°C) 0.0035

𝑇𝑇𝑏𝑏 (°C) 0.0038

- 𝑁𝑁0*

𝐴𝐴1 333

𝐵𝐵𝑢𝑢1 6

𝐵𝐵𝑤𝑤1 5

* The number of null elements in 
identified coefficients
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About half elements in A



Model Selection Results for Mode 2 (600s sampling time)
Variable RMSE

𝑃𝑃𝑐𝑐𝑐𝑐 (bar) 0.0157

𝑇𝑇𝑐𝑐𝑐𝑐 (°C) 0.0088

𝑃𝑃𝑐𝑐𝑐𝑐 (bar) 0.0138

𝑇𝑇𝑟𝑟 (°C) 0.0033

𝑇𝑇𝑎𝑎 (°C) 0.0048

𝑇𝑇𝑏𝑏 (°C) 0.0040

- 𝑁𝑁0*

𝐴𝐴1 267

𝐵𝐵𝑢𝑢1 4

𝐵𝐵𝑤𝑤1 5

* The number of null elements in 
identified coefficients
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Hybrid system model by mixed dynamical system

Mixed-integer dynamic 
model with bilinear terms
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HMPC for Chiller Plant with Water Storage

HMPC design problem: minimizing energy cost while regulating AHU return water 
temperature requirements, assuming perfect knowledge of future ambient temperature and 
cooling load

Electricity rate

Power model can 
be substituted into 
cost function 

Quadratic programming with 
mixed-integer bilinear terms
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Convexification for bilinear programming

McCormick inequalities

𝑓𝑓𝑧𝑧 𝑧𝑧, 𝛿𝛿 = 𝑧𝑧𝛿𝛿 𝑓𝑓𝑢𝑢 𝑢𝑢, 𝛿𝛿 = 𝑢𝑢𝛿𝛿

Define the new variables of bilinear functions

Convex hulls

MILP-MPC
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Hybrid Model Predictive Control with mixed-integer bilinear 
programming (HMPC-MIBLP)

 Dymola: Modelica model of 
Chiller Plant with Water Storage

 Python: MPC design and 
implementation

FMI 2.0 
Co-simulation

https://fmi-standard.org/
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Co-Simulation Results for HMPC Operation

 Sampling time : 600s 
 Predictive horizon : 2 hours 
 Initial tower fan speed: 40 Hz
 Initial chiller leaving water temperature setpoint: 10 °C
 Initial chiller plant water mass flow rate: 11 kg/s
 Initial TES charging/discharging mode: 1 (discharging)
 Initial ambient temperature: 28 °C
 Initial cooling load on AHU cooling coil: 360 kW

Simulation setting

Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for covex optimization. J. Machine Learning Res., 17(83), 1–5. 
https://doi.org/10.48550/arXiv.1603.00943.

T. Sommer, FMPy, (2020). Available online: https://github.com/CATIA-Systems/FMPy.

Utilized Python package:
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Co-simulation Results for HMPC Operation

low-price region 
(LPR: [0, 14.5] hour)
medium-price region 
(MPR: [14.5, 17.5] hour) 
high-price region 
(HPR: [17.5, 24] hour)
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Co-simulation Results for HMPC Operation

Oscillation due to 
mode switch and 
inner PI controllers
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Co-simulation Results for HMPC Operation

Regulated target: 
20.25 °C
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Co-simulation Results for HMPC Operation

HMPC: 288 kW

HMPC-Co: 252 kW

Mean total power:
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Conclusion

• We propose a data-driven method of Chiller plant coupled with 
chilled-water storage.

• The SINDYc-based Koopman-invariant subspace models are identified 
with simulations data from Modelica-based dynamics model.

• A MIBLP-MPC is formulated for global optimization of energy saving 
and satisfication of cooling rate demand.

• To solve this optimization problem, a convexification with McCormick 
envelopes is implemented and transformed the MIBLP into MILP.

• The proposed control strategy is evaluated with Python-based co-
simulation framework.

23



Acknowledgments

• TLK-Thermo is appreciated for their permission to access TIL Suite software and technical 
assistance

Thanks!

Any Questions?

24


	Hybrid Model Predictive Control of Chiller Plant with Thermal Energy Storage Evaluated with Modelica-Python Co-Simulation
	Outline
	Background
	Review of Existing Work
	Proposed Work
	Dynamic Simulation Plant
	Dymola Layout for Chiller Plant and TES
	Illustration for Two Operation Modes
	Control-oriented Model for Chiller Plant with Water Storage
	Data-driven model with Koopman operators for Mode 1&2
	Sparse Identification of Nonlinear Dynamics with Control (SINDYc)
	Model Selection Results for Mode 1 (600s sampling time)
	Model Selection Results for Mode 2 (600s sampling time)
	Hybrid system model by mixed dynamical system
	HMPC for Chiller Plant with Water Storage
	Convexification for bilinear programming
	Hybrid Model Predictive Control with mixed-integer bilinear programming (HMPC-MIBLP)
	Co-Simulation Results for HMPC Operation
	Co-simulation Results for HMPC Operation
	Co-simulation Results for HMPC Operation
	Co-simulation Results for HMPC Operation
	Co-simulation Results for HMPC Operation
	Conclusion
	Acknowledgments

