American Modelica Conference 2022

User Presentations 1

10/27/2022

David Blum Computational Research Scientist/Engineer Financial support provided by:

• Building Technologies Office of the U.S. Department of Energy

In collaboration with:

- Pacific Northwest National Laboratory
- National Renewable Energy Laboratory
- Oak Ridge National Laboratory
- IBPSA Project 1 WP 1.2 (<u>https://ibpsa.github.io/project1/</u>)

Acknowledgements – BOPTEST through IBPSA Project 1

Institution	Team
DeltaQ, Belgium	Roel De Coninck
Devetry, USA	Chris Berger, Philip Gonzalez, Amit Kapoor
ENGIE, France	Valentin Gavan
ETH Zurich / EMPA, Switzerland	Felix Bunning
IK4 Tekniker, Spain	Jesus Febres, Laura Zabala (now at R2M)
KU Leuven, Belgium	Javier Arroyo, lago Cupeiro, Filip Jorissen, Lieve Helsen
Lawrence Berkeley National Laboratory, USA	David Blum, Michael Wetter
National Renewable Energy Laboratory, USA	Kyle Benne, Nicholas Long, Marjorie Schott
Oak Ridge National Laboratory, USA	Yeonjin Bae, Piljae Im
Pacific Northwest National Laboratory, USA	Yan Chen, Jan Drgona, Sen Huang (now at ORNL), Draguna Vrabie
Polytechnic University of Milan, Italy	Ettore Zanetti (now at LBNL)
RWTH Aachen, Germany	Laura Maier, Fabian Wullhorst
SINTEF, Norway	Harald Walnum
Southern Denmark University, Denmark	Krzysztof Arendt, Konstantin Filonenko, Christian Veje, Tao Yang

- Introduction
- Framework Components
- Example Usage
- Conclusions and Next Steps

Background

Future (Additional) Requirements of Building HVAC Systems

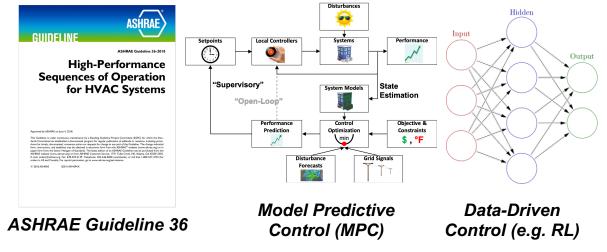
- Energy and carbon reduction
- Electric grid integration
- Resilience

Broader Ideas:

→ There's a growing need for improving controls for energy management and in response to dynamic operating conditions and objectives

→ What new tools are needed for new development and adoption of new control technologies and methods?

Challenges to Control Evaluation

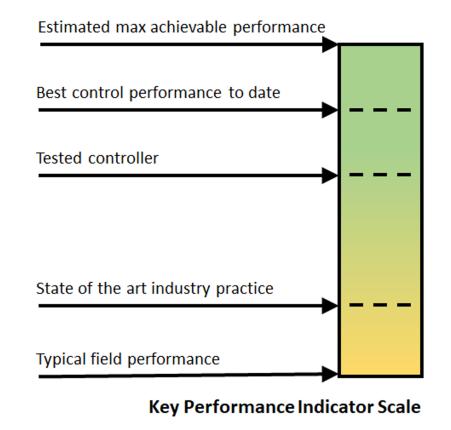

1. Individualized Studies

- Different building, HVAC, climate, period, performance metrics
- Different comparative baselines ¹

→ Difficult to answer which approach is most effective and where more work needed

2. Setup Time and Effort

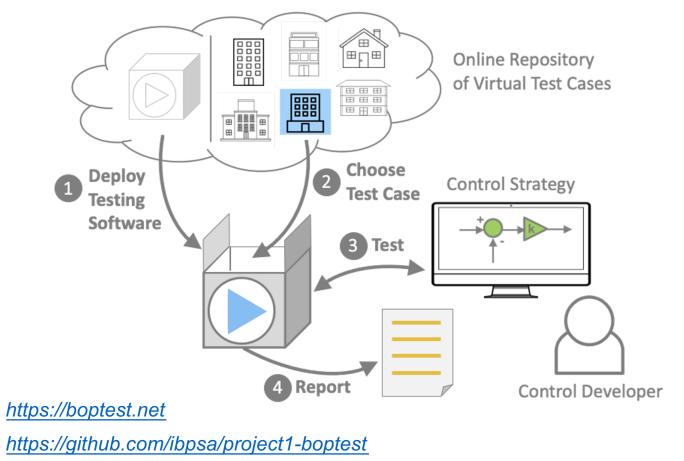
- Real buildings pose operational risks and have slow-changing operating conditions
- Realistic simulations require building modeling expertise and effort
- ightarrow Limits rapid prototyping
- → Limits opportunities from outside experts (e.g. process control, optimization, data science)


Examples of recent controls development

¹ Variability of energy consumption based on controls (Zhang et al. 2022 <u>https://doi.org/10.1080/19401493.2021.2021286</u>)

Goals

- Enable benchmarking state-ofthe-art control performance for building energy systems
- Accelerate building control software development and deployment
- Enable transition and encourage adoption of advanced building control algorithms


Approach

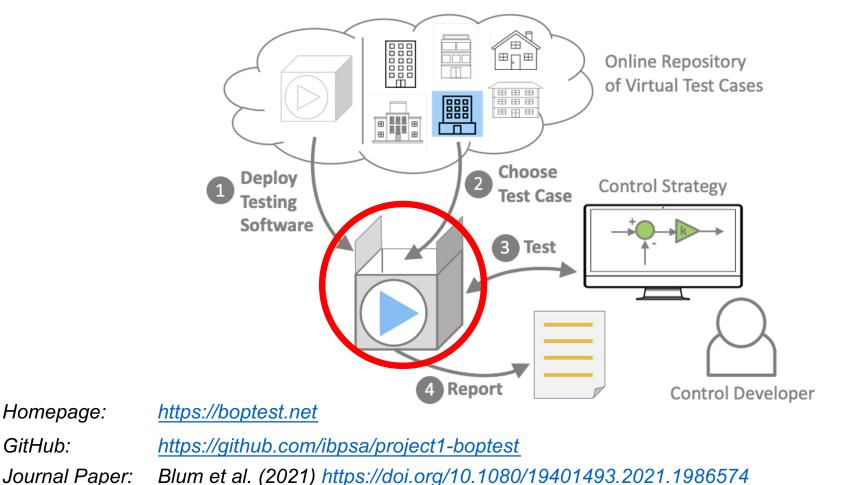
Homepage:

GitHub:

Building Optimization Testing Framework (BOPTEST): A Complete and Open Virtual Testing Environment

- Deployable, controlled software runtime environment
- Repository of reference test cases with emulator models and boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated

Journal Paper: Blum et al. (2021) <u>https://doi.org/10.1080/19401493.2021.1986574</u>

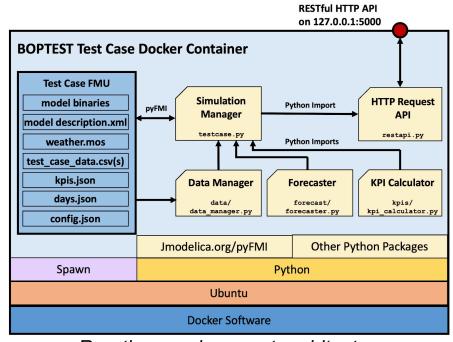

- Introduction
- Framework Components
- Example Usage
- Conclusions and Next Steps

Homepage:

GitHub:

Building Optimization Testing Framework (BOPTEST): A Complete and Open Virtual Testing Environment

- Deployable, controlled software runtime environment
- Repository of reference test cases with emulator models and boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated

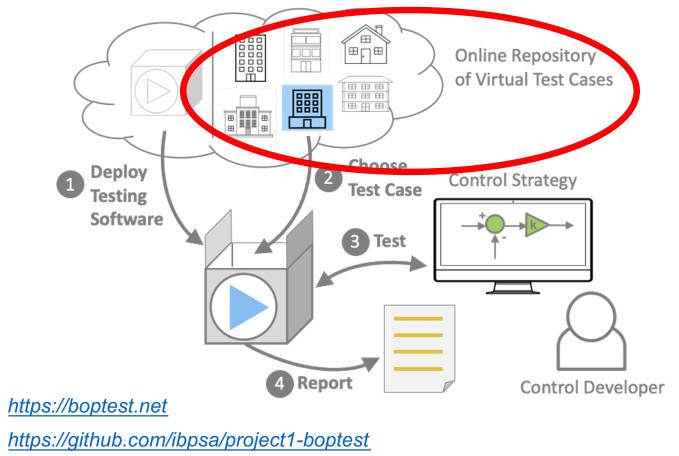


Run-Time Environment

- Functional Mockup Interface (FMI) for simulation management
- Docker for rapid, repeatable build and deploy locally cross-platform or as web-service
- HTTP-based RESTful API for test set up, emulator-controller co-simulation, and KPI reporting
- Standard API return formats including request status, messages, warnings, and errors
- Interface wrappers:
 - O OpenAl-Gym by KU Leuven Arroyo et al. 2021 (<u>https://doi.org/10.26868/25222708.2021.30380</u>)
 - BACnet/Brick with Johnson Controls and Colorado School of Mines (Fierro et al. 2022, BuildSys '22, Accepted.)

API Endpoint	Description
GET measurements	Receive available measurement points
GET inputs	Receive available input points
PUT scenario	Set test scenario (time period, ele. price)
PUT initialize	Initialize simulation
PUT step	Set control step
GET forecast	Receive forecasts
POST advance	Advance simulation with control input
PUT results	Receive historic point trajectory
GET <i>kpi</i>	Receive KPI values
POST submit	Submit results to online dashboard

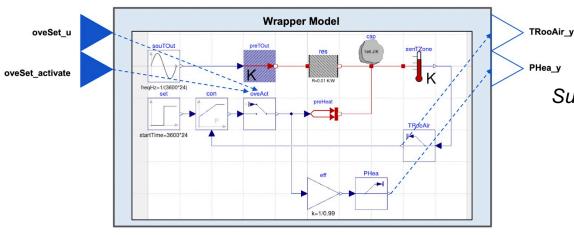
Key API endpoints and functions


Run-time environment architecture

Homepage:

GitHub:

Building Optimization Testing Framework (BOPTEST): A Complete and Open Virtual Testing Environment


- Deployable, controlled software runtime environment
- Repository of reference test cases with emulator models and boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated

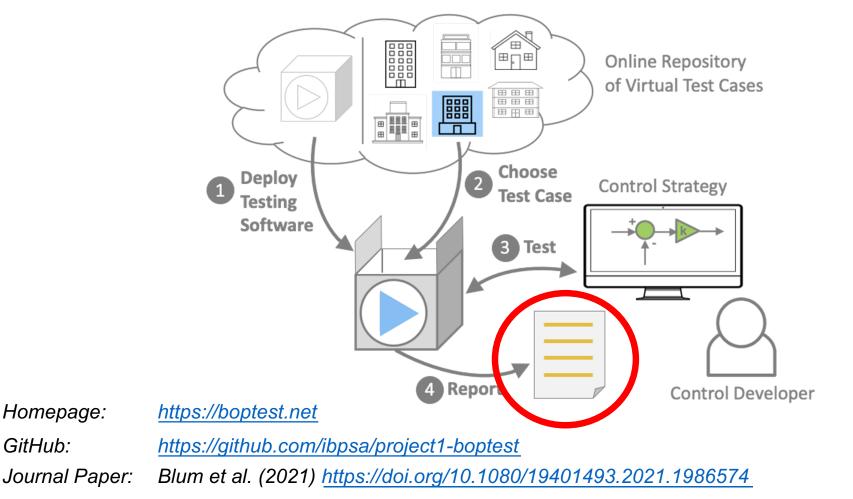
Journal Paper: Blum et al. (2021) https://doi.org/10.1080/19401493.2021.1986574

Common Set of Building Emulators

- High-fidelity models with embedded baseline controllers in Modelica and Spawn exported as FMUs
- All boundary condition data included (e.g. weather, schedules, electricity prices)
- Overwrite supervisory or local-loop points
- Practical control and measurement points
- Documentation
- Peer reviewed

Example Modelica model with read/write points

Hydronic	Air
Single zone + Radiator	Single zone + FCU
Single zone + Floor heat and heat pump	Single zone + RTU with DX, gas furnace
2 zone + Floor heat and heat pump	2 zone + FCUs + AHUs with gas boiler, chiller
8-Zone + Radiators, boiler, and split cooling	5-Zone + 1 VAV AHU with reheat with chiller and heat pump
Single zone class + Radiator, AHU, CO ₂ control	10-zone + 1 VAV RTU with reheat, DX, electric heating (ORNL FRP)
	15-Zone + 3 VAV AHU with reheat, chiller, boiler


Completed and available in repo

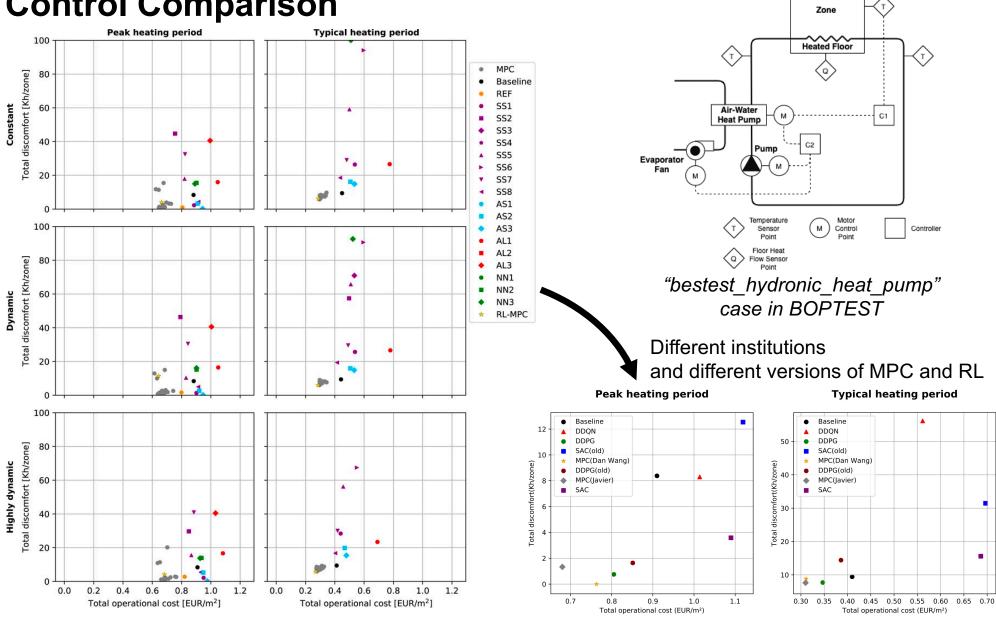
Implemented in Modelica but not finalized in repo

Subset of planned building emulators defined under IBPSA Project 1

Building Optimization Testing Framework (BOPTEST): A Complete and Open Virtual Testing Environment

- Deployable, controlled software runtime environment
- Repository of reference test cases with emulator models and boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated

Common Evaluation Design

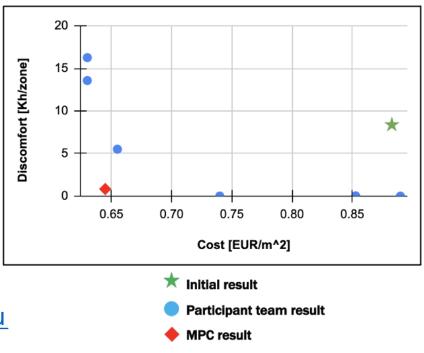

- Set of KPIs calculated by software framework for every test case, accounting for HVAC system energy
- Definition of testing scenarios for each emulator (e.g. time period and electricity prices)
- Capability for custom KPI calculation through access to test data
- Submission of KPIs and controller information to online dashboard

- 1. Energy Use [kWh/m²]
- 2. Energy Cost [\$/m²]
- 3. Emissions [kg CO2/m²]
- 4. Thermal Discomfort [K h/zone]
- 5. IAQ Discomfort [ppm h /zone]
- 6. Computational Time Ratio [-]
- 7. Peak Electricity Demand [kW/m²]
- 8. Peak Gas Demand [kW/m²]
- 9. Peak District Heating Demand [kW/m²]

- Introduction
- Framework Components
- Example Usage
- Conclusions and Next Steps

Example Usage

Comparison of MPC and RL controllers using BOPTEST from (left) Arroyo et al. (2022, https://doi.org/10.3389/fbuil.2022.849754) and (right) Z. Wang, W. Zheng, and D. Wang (presented at IEA Annex 81 meeting 10/13/22, reproduced w/ permission)


Example Usage

Training

- IBPSA Building Simulation
 in August 2021
 - o 15 participants
 - Tutorial material: <u>https://github.com/ibpsa/project1-</u> <u>boptest/tree/master/docs/workshops/BS21W</u> <u>orkshop_20210831</u>
 - Energyville in October 2021
 - o 17 participants
 - Tutorial material: same as above
- Climate Change AI Summer School in August 2022
 - ~60 participants
 - Tutorial material: <u>https://github.com/ibpsa/project1-boptest-gym/tree/master/docs/tutorials/CCAI%20Summer%20School%202022</u>

IBPSA Building Simulation 2021 workshop

IBPSA Building Simulation 2021 exercise results

- Introduction
- Framework Components
- Example Usage
- Conclusions and Next Steps

Conclusion

Why Modelica for BOPTEST Test Cases?

- High fidelity building systems modeling with realistic HVAC network pressure-flow
 and control dynamics
- Realistic representation of control points available, including supervisory and localloop control
- Variable time-step solvers allow for small simulation step sizes and data resolution
- Open-source, validated component library availability and development through IBPSA Modelica community

A Key Takeaway for Modelica Community

- Modelica does not need to be the end-user-facing technology, which assumes all users climb the learning curve.
- Modelica can serve as fundamental technology to new modeling use cases that reach a broader audience, which can also drive further adoption of Modelica.

Next Steps

DOE Project

- New industry partners:
 - o Arup
 - o Johnson Controls
- Concentrations on framework software development to facilitate usage within industry:
 - BACnet communication interface (FY23) and semantic models (FY24)
 - Scenarios representing realistic building operation (e.g. internal load schedules, faulty operation, DR signals)
- Improve web-service to ensure robustness, stability, and usability as user number and industry-orientation grows
- Finalize emulators under development and update existing with latest Modelica libraries and open-source compilers
- Continued maintenance and feature enhancement as needed and in response to user feedback

Next Steps

IBPSA Project

- Continuation from IBPSA Project 1 WP1.2 to focus on BOPTEST (pending board approval)
- Coordinate international community development and engagement
- Four main tasks:
 - 1. Community engagement and outreach
 - 2. Methods and infrastructure development
 - 3. Test case development (for additional building types and applications)
 - 4. Control benchmarking
- 5-year project starting in late 2022/early 2023

Thank you!

David Blum dhblum@lbl.gov

