

Prototyping Composable Simplification Passes for Equation-Oriented Models Using ModelingToolkit.jl

Yingbo Ma, Keno Fischer, Chris Rackauckas, and Viral Shah

Core Point: ModelingToolkit makes it easy to design new and better simplification algorithms interactively

ModelingToolkit

```
function EMF(; name, k)
    (named p = Pin())
    (named n = Pin())
    @named flange = Flange()
    @named support = Support()
    Oparameters k = k
    Qvariables v(t)=0.0 i(t)=0.0 phi(t)=0.0 w(t)=0.0
    eqs = \begin{bmatrix} v & p \cdot v - n \cdot v \end{bmatrix}
            0 ~ p.i + n.i
           i ~ p.i
           phi ~ flange.phi - support.phi
           D(phi) ~ w
           k * w ~ v
            flange.tau ~ -k * i]
    ODESystem(eqs, t, [v, i, phi, w], [k]; name = name, systems = [p, n, flan
end
```

```
@named ground = Ground()
      @named source = Voltage()
 2
      @named ref = Blocks.Step(height = 1, start_time = 0)
 3
      Onamed pi_controller = Blocks.LimPI(k = 1.1, T = 0.035, u_max = 0.6, Ta = 0.035)
 5
      @named feedback = Blocks.Feedback()
      (Qnamed R1 = Resistor(R = R))
 6
      Qnamed L1 = Inductor(L = L)
 7
 8
      0 named emf = EMF(k = k)
      @named fixed = Fixed()
 9
10
      @named load = Torque(use_support = false)
11
      @named load_step = Blocks.Step(height = tau_L_step, start_time = 3)
      @named inertia = Inertia(J = J)
12
      Qnamed friction = Damper(d = f)
13
14
      @named speed_sensor = SpeedSensor()
15
16
      connections = [connect(fixed.flange, emf.support, friction.flange_b)
                     connect(emf.flange, friction.flange_a, inertia.flange_a)
17
                     connect(inertia.flange_b, load.flange)
18
19
                     connect(inertia.flange_b, speed_sensor.flange)
                     connect(load_step.output, load.tau)
20
                     connect(ref.output, feedback.input1)
21
                     connect(speed_sensor.w, feedback.input2)
22
                     connect(feedback.output, pi_controller.err_input)
23
                     connect(pi_controller.ctr_output, source.V)
24
                     connect(source.p, R1.p)
25
26
                     connect(R1.n, L1.p)
                     connect(L1.n, emf.p)
27
28
                     connect(emf.n, source.n, ground.g)]
29
```

30

XSystem → YSystem

 $eq = [Dt(u(x,y,t)) \sim 1. + v(x,y,t)^{2} - 4.4^{*}u(x,y,t) + \alpha^{*}\nabla^{2}(u(x,y,t)) + (x,y,t)^{2} + \alpha^{*}\nabla^$ $brusselator_f(x, y, t)$. $Dt(v(x,y,t)) \sim 3.4^{*}u(x,y,t) - v(x,y,t)^{*}u(x,y,t)^{2} + \alpha^{*}\nabla^{2}(v(x,y,t))$ domains = $[x \in Interval(x_min, x_max),$ $y \in Interval(y_min, y_max),$ t ∈ Interval(t_min, t_max)] # Periodic BCs bcs = $\left[u(x,y,\theta) \sim u\theta(x,y,\theta) \right]$ $u(0,y,t) \sim u(1,y,t)$, $u(x,0,t) \sim u(x,1,t),$ $v(x,y,\theta) \sim v\theta(x,y,\theta)$ $v(0,y,t) \sim v(1,y,t),$ $v(x,0,t) \sim v(x,1,t)$ PDESystem → ODESystem @named pdesys = PDESystem(eq,bcs,domains,[x,y,t],[u(x,y,t),v(x,y,t)]) N = 32dy, dx = $(y_max-y_min)/N$, $(x_max-x_min)/N$ <u>d</u>iscretization = MOLFiniteDifference([x⇒dx, y⇒dy], t) symbolic_discretize(sys, discretization) So Julia Hub

XSystem → YSystem

MomentClosure.jl

ReactionNetwork → ODESystem

using Catalyst, MomentClosure rn = @reaction_network begin # including system-size parameter Ω (c_1/Ω^2), 2X + Y \rightarrow 3X (c_2), X \rightarrow Y ($c_3^*\Omega$, c_4), $\Theta \leftrightarrow X$ end $c_1 c_2 c_3 c_4 \Omega$ generate_raw_moment_eqs(rn, 2, combinatoric_ratelaw=false)

```
using ModelingToolkit, MomentClosure
  XSystem → YSystem
                                      0 variables t, x_1(t), x_2(t)
                                      Qparameters \in, \omega_n, \omega_g, A
                                      drift_eqs = [Differential(t)(x_1) ~ x_2;
                                                  Differential(t)(x<sub>2</sub>) ~ \epsilon^*(1-x_1^2)^*x_2 - \omega_n^2^*x_1 + A^*\cos(\omega_g^*t)]
MomentClosure.jl
SDESystem → ODESystem
                                      diff_eqs = [0; A]
                                      @named vdp_model = SDESystem(drift_eqs, diff_eqs, t,
                                             [x<sub>1</sub>, x<sub>2</sub>], [ε, ω_n, ω_g, A])
                                      generate_raw_moment_eqs(vdp_model, 2)
```

XSystem → YSystem

Proper Orthogonal Decomposition and Discrete Empirical Interpolation Method (POD-DEIM)

ModelOrderReduction.jl

ODESystem → ODESystem

XSystem and others → YSystem

OM.jl

Modelica → ODESystem

```
model SimpleMechanicalSystem
  parameter Real J1 = 1, J2 = 1;
  constant Real C = 1;
  Real u:
  Real Phi_1, Phi_2;
  Real omega_1 , omega_2;
  Real tau_1, tau_2, tau_3;
initial equation
  omega_1 = 0;
 omega_2 = 0;
 Phi_1 = 0;
 Phi_2 = 0;
equation
 u = time;
 // The Algebraic variables
 tau_1 = u;
 tau_2 = C * (Phi_2 - Phi_1);
 tau_3 = -tau_2;
 der(Phi_1) = omega_1;
 der(Phi_2) = omega_2;
  der(omega_1) = (tau_1 + tau_2) / J1;
  der(omega_2) = tau_3 / J2;
end SimpleMechanicalSystem;
```

Clearly, many (young) contributors have easily added their own transformation passes in record time.

Why is MTK so hackable for writing transformations?

I will show the interactivity by describing the structural simplification passes!

julia>

julia> ts	s = TearingState(ex	<pre>kpand_connections(rc_model)); find_solvables!(ts); ts.structure</pre>	<pre>julia> dummy_derivative(ts)</pre>		
SystemStr	ructure with 22 equ	uations and 23 variables	Matched S	SystemStructure wi	th 22 equations and 23 variables
# dt	eq dt	V	# dt	eq dt	; V
1	[3, 4, 5] 2↓	[8]	1	[3 , 4 , 5] 2.	↓ [8]
2	[6, 7] 11	[5]	2	[<mark>6</mark> , 7] 1 [·]	↑∫[5]
3	[7, 8]	[1, 18]	3	[7, 8]	[1, 18]
4	[4, 8]	[1, 4]	4	[4, 8]	[1, 4]
5	[2, 9, 10]	[1, 16]	5	[2, 9, 10]	[1, 16]
6	[11, 12]	[2, 19]	6	[11, 12]	[2, 19]
7	[12, 13]	[2, 3, 17]	7	[12, 13]	[2, 3, 17]
8	[1, 13]	[3, 4]	8	[<mark>1</mark> , 13]	[3, 4]
9	[14]	[5, 20, 21]	9	[14]	[5, 20, <mark>2</mark> 1]
10	[15, 16, 17]	[5, 18]	10	[15, 16, <mark>17</mark>]	[5, 18]
11	[18, 19]	[6, 22]	11	[18, 19]	[6, 22]
12	[19, 20]	[6, 7, 19]	12	[19, 20]	[6, 7, 19]
13	[16, 21]	[7, 8]	13	[16, 21]	[7, 8]
14	[22]	[9, 15]	14	[22]	[9, 15]
15	[14, 21]	[10, 20]	15	[14, <mark>21</mark>]	[10, <mark>20</mark>]
16	[5, 17]	[10, 13]	16	[<mark>5</mark> , 17]	[10, <mark>13</mark>]
17	[7, 19]	[10, 16]	17	[7, 19]	[10, 16]
18	[3, 10]	[11, 22]	18	[<mark>3,</mark> 10]	[11, 22]
19	[6, 12]	[11, 12, 17]	19	[6, 12]	[11, 12, <mark>1</mark> 7]
20	[9, 15]	[12]	20	[9, 15]	[12]
21	[9, 22]	[13, 15]	21	[9, 22]	[13, 15]
22	[11, 18, 23]	[14, 21]	22	[11, 18, <mark>23</mark>]	[14, 21]
23		[22]	23		[22]

Dummy derivative

$$x_1 + x_2 + u_1(t) = 0$$

$$x_1 + x_2 + x_3 + u_2(t) = 0$$

Do all the variables with a prime have the same interpretation?

$$\begin{aligned} x_1' + \dot{x}_2 + \dot{u}_1(t) &= 0\\ x_1' + \dot{x}_2 + x_3' + \dot{u}_2(t) &= 0\\ x_1 + x_3' + x_4 + u_3(t) &= 0 \end{aligned}$$

$$x_1'' + \ddot{x}_2 + \ddot{u}_1(t) = 0$$

$$x_1'' + \ddot{x}_2 + x_3'' + \ddot{u}_2(t) = 0$$

$$x_1' + x_3'' + x_4' + \dot{u}_3(t) = 0$$

$$2x_1'' + \ddot{x}_2 + x_3'' + x_4' + u_4(t) = 0$$

$$\dot{x} = x'$$

 $\ddot{x} = \dot{x'} = f(x)$

.

Symbols could be misleading

$$x_{1} + x_{2} + u_{1}(t) = 0$$

$$x_{1} + x_{2} + x_{3} + u_{2}(t) = 0$$

$$x'_{1} + \dot{x}_{2} + \dot{u}_{1}(t) = 0$$

$$x'_{1} + \dot{x}_{2} + x'_{3} + \dot{u}_{2}(t) = 0$$

$$x'_{1} + \dot{x}_{2} + x'_{3} + \dot{u}_{2}(t) = 0$$

$$x'_{1} + \dot{x}_{2} + \ddot{u}_{1}(t) = 0$$

$$x''_{1} + \ddot{x}_{2} + \ddot{u}_{1}(t) = 0$$

$$x''_{1} + \ddot{x}_{2} + x''_{3} + \ddot{u}_{2}(t) = 0$$

$$x''_{1} + x''_{3} + x'_{4} + \dot{u}_{3}(t) = 0$$

$$2x''_{1} + \ddot{x}_{2} + x''_{3} + x'_{4} + u_{4}(t) = 0$$

Dummy derivative: structural encoding

Tearing tells us which variable is solved by which equation

Int \mapsto Union{Int, Nothing}

Actual differential variables cannot be algebraically solved by any equation

Int → Union{Int, Nothing, SelectedState}

Hence, dummy derivatives are variables that appear to be differentiated, but its lower derivative is not a SelectedState.

$$x_1 + x_2 + u_1(t) = 0$$
$$x_1 + x_2 + x_3 + u_2(t) = 0$$

$$x_1' + \dot{x}_2 + \dot{u}_1(t) = 0$$

$$x_1' + \dot{x}_2 + x_3' + \dot{u}_2(t) = 0$$

$$x_1 + x_3' + x_4 + u_3(t) = 0$$

$$\begin{aligned} x_1'' + \ddot{x}_2 + \ddot{u}_1(t) &= 0\\ x_1'' + \ddot{x}_2 + x_3'' + \ddot{u}_2(t) &= 0\\ x_1' + x_3'' + x_4' + \dot{u}_3(t) &= 0\\ 2x_1'' + \ddot{x}_2 + x_3'' + x_4' + u_4(t) &= 0 \end{aligned}$$

julia> dummy_derivative(ts)
Matched SystemStructure with 9 equations and 11 variables

#	ðτ	eq	∂_t	V
1	5↑	[10, 11]	7↑8↓	[3, 7]
2	7↑	[<mark>8,</mark> 10, 11]	9↓	[4, 9]
3	9↑	[1, <mark>9</mark> , 10]	4↓	[4, 6, 8]
4		[2, 3, <mark>5</mark> , 7]	3↑10↓	[<mark>5</mark> , 7, 9]
5	6↑1↓	[4, 6]	6↓	[4, 6, 8]
6	5↓	[3, 5]	5↑11↓	∫ [5, 7]
7	8↑2↓	[1, 4, 6]	1↓	[4, 8, 9]
8	7↓	[3, 5, 7]	1↑	[2]
9	3↓	[2, 4, 7]	2↑	[3]
10		•	4 ↑	[1, 2, 3]
11		•	6↑	∫ [1, 2]

julia> ts.fullvars[[6, 11]]
2-element Vector{Any}:
Differential(t)(x2(t))
x2(t)

Alias elimination

julia> model_ex = expand_connections(model); equations(model_ex) 34-element Vector{Equation}: $R1_{+}v(t) \sim R1_{+}p_{+}v(t) - R1_{+}n_{+}v(t)$ $0 \sim R1_{+}n_{+}i(t) + R1_{+}p_{+}i(t)$ $R1_{i}(t) \sim R1_{p_{i}}(t)$ $R1_{+}v(t) \sim R1_{+}R^{*}R1_{+}i(t)$ $R_{2+v}(t) \sim R_{2+p+v}(t) - R_{2+n+v}(t)$ $0 \sim R2_{+}n_{+}i(t) + R2_{+}p_{+}i(t)$ $R2_{i}(t) \sim R2_{p+i}(t)$ $R2_{+}v(t) \sim R2_{+}R^{*}R2_{+}i(t)$ $L1_{+}v(t) \sim L1_{+}p_{+}v(t) - L1_{+}n_{+}v(t)$ $0 \sim L1_{+n+i}(t) + L1_{+p+i}(t)$ $L1_{i}(t) \sim L1_{p+i}(t)$ Differential(t)(L1₊i(t)) ~ L1₊v(t) / L1₊L $L_{2+v}(t) \sim L_{2+p+v}(t) - L_{2+n+v}(t)$ $0 \sim L_{2+n+i}(t) + L_{2+p+i}(t)$ $L2_{i}(t) \sim L2_{p_{i}}(t)$ Differential(t)(L2+i(t)) ~ L2+v(t) / L2+L $source_{+}v(t) \sim source_{+}p_{+}v(t) - source_{+}n_{+}v(t)$ $0 \sim \text{source}_{+n+i}(t) + \text{source}_{+p+i}(t)$ source_i(t) ~ source_p_i(t) $source_{+}v(t) \sim source_{+}V_{+}u(t)$ $constant_{+}output_{+}u(t) \sim constant_{+}k$ $\operatorname{ground}_{q+v}(t) \sim 0$ $constant_{+}output_{+}u(t) \sim source_{+}V_{+}u(t)$ source₊p₊v(t) ~ L1₊p₊v(t) $0 \sim L1_{p+i}(t) + source_{p+i}(t)$ $R1_{p+v}(t) \sim R2_{p+v}(t)$ $R1_{p+v}(t) \sim L1_{n+v}(t)$ $0 \sim L1_{+}n_{+}i(t) + R1_{+}p_{+}i(t) + R2_{+}p_{+}i(t)$ $L_{2+p+v(t)} \sim R_{2+n+v(t)}$ $L2_{p+v}(t) \sim R1_{n+v}(t)$ $0 \sim L_{2+p+i}(t) + R_{1+n+i}(t) + R_{2+n+i}(t)$ source₊n₊v(t) ~ L2₊n₊v(t) $source_{+}n_{+}v(t) \sim ground_{+}g_{+}v(t)$ $0 \sim L_{2+n+i}(t) + ground_{g+i}(t) + source_{n+i}(t)$

∙JuliaHub

Alias elimination

Alias elimination

Not index 1

julia> full_equations(dummy_derivative(model_ex))
4-element Vector{Equation}:
Differential(t)(L1+i(t)) ~ (constant+k - L2+p+v(t) - R2+R*R2+p+i(t)) / L1+L
Differential(t)(L2+i(t)) ~ L2+p+v(t) / L2+L
0 ~ L2+i(t) - L1+i(t)
0 ~ R1+R*(R2+p+i(t) - L2+i(t)) + R2+R*R2+p+i(t)

Alias elimination: singularity removal

julia> full_equations(dummy_derivative(alias_elimination(model_ex)))
3-element Vector{Equation}:
Differential(t)(L1+i(t)) ~ -((-(constant+k - L1+v(t) - R1+R*(L1+i(t) - R2+i(t)))) / L2+L)
0 ~ R2+R*R2+i(t) - R1+R*(L1+i(t) - R2+i(t))
0 ~ (-(constant+k - L1+v(t) - R1+R*(L1+i(t) - R2+i(t)))) / L2+L + L1+v(t) / L1+L

Stronger alias elimination

)]

Stronger alias elimination

Stronger alias elimination

plot_tearing_state

