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Introduction

MOTIVATION:

U Rapid depletion of fossil fuel resources.

O Extreme weather events attributed to climate
change.

L Need for energy security and resilience.

Diversification of energy resources along with
decarbonization is the future of sustainable energy.

/N

Increase in nuclear- renewable
mix in power generation aids in (@)
the shift towards green energy
resources and decarbonization.
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Change in carbon intensity of power generation by state (2016-2020)
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“From 2016 to 2020, the carbon intensity of U.S.

power generation fell 18%.” — U.s. Energy Information
Administration, Power Plant Operations Report

Nuclear power can generate enormous
amounts of reliable, carbon free electricity.
They contribute to the stability of electricity
grids by backing up the intermittent output of
renewable sources through flexible operation
or load following.

https://www.iaea.org/newscenter/news/nuclear-and-renewables-
playing-complementary-roles-in-hybrid-energy-systems
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https://www.eia.gov/electricity/data/eia923/

Background

Integrated Energy Systems (IES) is an approach of

O Improve energy utilization by employing
the same generation resources to supply
multiple end uses such as electricity,
heat, transportation, etc.

Sector coupling

S| | 2 gob - ‘ 7 -P - 7 -.’.,
- = ST & '\'i'
Nuclear energy from large light-water Other generation including variable

Mobility reactors to microreactors renewables and municipal waste

https://ies.inl.gov/SitePages/
Home.aspx

Biofuel Industry

Global annual demand for hydrogen since 1980

Clean water Hydrogen for
vehicles and industry

Newhemical Electricity 100
processes %
O Green hydrogen production has ¢~ e F
Banasns Electricity gained unprecedented momentum 5 ., —— |
O Hydrogen is also now a commodity in ; . e B ‘ |
s— the electricity/thermal energy sector. = | =— |
Source: forum-synergiewende.de i RENEWABLE
11/2018 m iggzgz - :
®2018 Agentur fur Erneuerbare Energien e.V. 3 ronewettee RP—— 0 -
¥ Refining Ammonia A other p A Methanol DRI Other mixed

Irena 2019 report, Hydrogen: a renewable energy perspective
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Background

 Small Modular Reactors (SMRs) are
advanced nuclear reactors with size from
tens of megawatts up to hundreds of
megawatts .

1 SMRs are modular, scalable, and a clean
energy resource, which can provide
reliable energy for power generation,
process heat, desalination, and/or other
industrial uses.

Small modular
reactor
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The U.S. DOE has partnered with
NuScale Power and Utah Associated
Municipal Power Systems (UAMPS)
to demonstrate a first-of-a-kind
reactor technology at the Idaho

National Laboratory this decade. V

Traditional nuclear
energy plant

https://inl.gov/trending-topic/small-modular-reactors/

ssssss U.S. Assistant Secretary for Nuclear Energy 2= Q ’
N @DOE_NE1

FIRST EVER. @NuScale_Power’'s SMR design approval
from @NRCgov marks a MAJOR milestone for the US
nuclear industry. We are closer to bringing these
innovative SMR designs and other advanced
technologies to market sooner. This move demonstrates
our global leadership in this arena.

™ NuScale Power @NuScale Power

NuScale Power Makes History as the First Ever #SmallModularReactor
to Receive U.S. Nuclear Regulatory Commission Design Approval.
@NRCgov #SMR #FutureOfEnergy ow.ly/mocW50BbWW4
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Goal

\ l Electrical Energy
 Design and model an IES with nuclear plant /0 =N\ Thermal energy
(i.e., SMR) as the primary source along with l
wind energy, supplying electricity to the grid Green energy

and utilizing thermal energy and electricity to resources

produce hydrogen.

U Design a control system to ensure coordinated
control between different subsystems while
responding to the optimal dispatch signals.

 Evaluate the IES performance and inspect load
following capability.

End uses

Hydrogen plant
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Choice of Modeling and Simulation Platform

modeI:ca
>

Multi-domain modeling.

Ease of modeling hybrid, non-linear,
simultaneous, differential-algebraic equations.

Physical interaction between components
possible using connectors.

Modeling is based on equations as opposed to
assignment statements.

Flow directionality can be modeled.

Object oriented language: reusable, extensible
and exchangeable.

IES modeling requirements:

Multi-domain modeling tool: different forms of
energy and material transfer within the IES.
Thermal, fluid, mechanical and electrical
component models in our case.

A “system of systems”.

Physics based modeling and simulation to
evaluate the behavior and response of
components and system to dispatch signals.

Dymola
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Model Development

Top level view of IES model in Dymola
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The IES park uses the template provided by ORNL in the TRANSFORM library. These https.//github.com/christiankral/WindPowerPlants
sandbox models have also been adopted by INL in the HYBRID-NHES package.
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Model Develop

ment

Steam Manifold: Diverts steam to

different subsystems using valves
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Supervisory
controller for IES
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Supervisory control is
responsible for overall system
control and coordination.

Accepts dispatch signals and
sends control signals to lower-
level control modules
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Control and Co-ordination
Electrical Load Following in IES
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Control Architecture

IES with nuclear generation supplying electricity IES with nuclear and wind generation supplying
to grid and hydrogen as byproduct electricity to grid and hydrogen as byproduct
’ Input: Grid demand, wind
Input: Grid demand power generation
Supervisory Control Supervisory Control
HTSE setpoint = lim (BOP,,qy — HTSE setpoint = lim (BOPyqyx +
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Steam
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Steam
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Windgen: Power generated by
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Simulation Results

IES with nuclear generation supplying electricity to grid and hydrogen as byproduct
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Simulation Results

Electrical Power (W)

IES with nuclear and wind generation supplying electricity to grid and hydrogen as byproduct
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Conclusion

O An integrated energy system comprising of nuclear and wind power plants as generating
resources, grid as electrical load, and hydrogen production plant as industrial plant, was
designed and developed in the Modelica-based Dymola platform.

d The control architecture and load-following capability of the IES were evaluated.

O It was observed that the various components and associated controllers in the IES faithfully
follow the setpoints generated by the supervisory control during load following conditions.
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Ongoing and Future Work

Integration with optimal scheduling tool Reinforcement learning control on physics-based models

Flexible Energy
Scheduling Tool for
Integrating Variable

Agent

action state
BOP control

Generation (FESTIV)

st e |
dispatch data N Modelica
Dvrjnola-pvthon i corror ] model of IES
interface valves
Physical Hydrogen generation
representation of IES

using Modelica

Perform dynamic simulation using dispatch
signals to evaluate feasibility and determine
actual hydrogen and electricity production
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