BESMod - A Modelica Library providing Building Energy System Modules

Fabian Wüllhorst, Laura Maier, David Jansen, Larissa Kühn, Dominik Hering, Dirk Müller

Motivation

Domain-coupled building sector is a foundation for integration of renewable energy

Climate Change requires installation of renewables and a shift towards a more electrified energy system

Development of new design and control methods is required

Simulation can serve as a fast and economical option to analyze and optimize new methods

Consideration of domain-coupling is vital in renewable building energy systems

Modelica enables the modeling and coupling of different domains

Are there libraries for the modeling of domain-coupled building energy systems?

Related work

Several libraries provide component models for all relevant domains

Rich pool of component models for all domains available in **twelve** libraries

Current gap

No library targets the domain-coupled simulation and analysis of build energy systems

Rich pool of component models for all domains available in twelve libraries

No single library provides the "best" models for all domains

Lack of system models, uniform interfaces and consistent parameterization

Use models from multiple libraries

Provide systems using a modular structure and consistent parameterization

Develop **BESMod**, a library providing **B**uilding **E**nergy **S**ystem **Mod**ules

General idea and scope of BESMod

Use models from multiple libraries

■ BESMod is built upon component libraries

Provide systems using a modular structure and consistent parameterization

- BESMod is fully modular
 - A (sub)-system is a module
 - Modules/subsystems for all domains

Approach for a modular subsystem design

Bus connectors

- Color-coding
- No pre-defined variables
- No usage in the uppermost system

Vector sized ports

- Multiple zones
- Multiple generation systems

Interfaces

- BuiMeaBus
- HEMSBus
- OutputsBus
- **UseProBus**

```
expandable connector UseProBus "Data bus with user profiles"
  extends BESMod.Utilities.Icons.UseProBus;
a
end UseProBus;
```


Replaceability

- All modules are constrainedby some PartialModule
- Usage of *choicesAllMatching* and *modifiers*

```
replaceable BESMod.Tutorial.BaseClasses.PartialModule module
  constrainedby BESMod.Tutorial.BaseClasses.PartialModule(
    final yMax=yMax
)
  "Correct overwrite of top-down parameters"  ;
```


Uniform parameterization approach based on four principles

1. Top-Down parameters

- Given by the parent or adjacent systems
- Always final

2. Bottom-Up parameters

- Defined by remaining parameters
- Not final, enables fine-tuning

3. Records for component data

- Only component physics
- Usage of top-down parameters

4. Component choices

■ E.g. use the bypass valve

The building envelope is the core of the energy system

Layout

- Only building envelope
- User profiles are separated and depend on building model

- Thermal
- Ventilation (moist air)
- Electrical

- Nominal T and \dot{Q} as bottom-up
- Geometry as bottom-up

Description of the hydraulic subsystem

Layout

- According to EN 15316-1
- Similar setups in ASHRAE Standard 111

Connectors

- Fluid for DHW
- Heat for building

Parameterization

- Records as function of top-down parameters and constants
- Design rules presented in previous work

Description of the electrical subsystem

Layout

- According to EN 15316-1
- Transfer system for e.g. infrared heating

Connectors

- Component libraries use power
- No domain-coupling, use of power (W)
- No usage of voltage and current

Parameterization

PV sizing based on the roof area (top-down parameter)

Description of the remaining subsystems

Ventilation

- Similar to hydraulic system
- No transfer system required

Weather

- Not replaceable
- TMY3-Reader so far works for all cases

Supervisory control

- Connected to all local controls
- Type is defined in local control
- Internal supervisory control or external via e.g. BOPTEST

Steps to aggregate a coupled building energy system

Simulation

- Redeclare subsystems
 - Select component choices
 - Choose component records
 - Fine-tune bottom-up parameters
- Choose weather file
- Overwrite parameters to study
- Simulate

Debugging

- Disable single subsystems
- Test new subsystems in dedicated *Tests* package

Proof of concept

Comparison of two building models with the same HVAC energy system

Proof of concept

- Comparison of *ThermalZone* to *MixedAir*
- Model for *PartialUseCase*
- User and building modules not replaced

Highlights

- Only graphical interaction
- No additional connection on top-level
- Annual simulations take < 6 min</p>

Results

- Different Building physics
- PV sizes with roof area
- *MixedAir* with higher solar gains

Conclusion

Several areas for future development exists

Library Development

- Electrical connectors update in IBPSA
- Validation of coupled systems
- Compatibility to OpenModelica
- Extension of Continuous Integration

Future Use-Cases

- Control development and testing
 - Development of cases for BOPTEST?
 - Coupling to Ontologies such as Brick
- Simulation based design optimizations

Conclusion

Already active developer community in Aachen hopes for international support

- BESMod is only as good as the component libraries and the community!
- Active user community in Aachen
 - 20 Students and 10 Ph.D. candidates
 - Currently, we perform personal workshops to explain the usage
 - Better documentation and YouTube tutorials to follow
- Invitation to use and further develop BESMod

Visit and use BESMod:

https://github.com/RWTH-EBC/BESMod

Supported by:

on the basis of a decision by the German Bundestag

Promotional reference 03ET1495A.

This work emerged from the IBPSA Project 1.

BFSMod

Approach for a modular subsystem design

Bus connectors

- Color-coding
- No pre-defined variables
- No usage in the uppermost system

Vector sized ports

- Multiple zones
- Multiple generation systems

Replaceability

- All modules are constrainedby some PartialModule
- Usage of choicesAllMatching and modifiers

Interfaces

- BuiMeaBus
- **HEMSBus**
- OutputsBus
- **UseProBus**

end UseProBus;

expandable connector UseProBus "Data bus with user profiles" extends BESMod. Utilities. Icons. Use ProBus;

Compatibility to OpenModelica

- Arrays in expandable connectors
- Expandable in expandable
- Replaceable arrays

