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Background Introduction
• Nuclear power plants have traditionally served as centralized plants

for base supply.

• The development of advanced small modular reactors (SMRs) in
recent years has brought nuclear utilization for microgrids closer,
together with other forms of green energy, such as solar and wind.

• Given the interaction of multi-domain systems, the Modelica
language is an appropriate tool for developing multi-physics models.

• For this study, we used open-source packages such as HYBRID (by
INL) and a TRANSFORM (by ORNL) library to create the Integrated
Energy System (IES).

• What is the suitable way to control such a complex system, artificial
intelligence or a traditional controller like PID, or both?

Source_1: IAEA

source_2: IAEA

source_3: LinkedIn

Energy
Management
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https://www.iaea.org/newscenter/news/what-is-nuclear-energy-the-science-of-nuclear-power
https://www.iaea.org/newscenter/news/what-are-small-modular-reactors-smrs
https://www.linkedin.com/pulse/carbon-free-cities-achievable-utopia-karla-villanueva/
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Motivation and Objective
Motivation:
• When a variety of renewable energy systems combine to form a complex integrated energy system (IES),

the benefit of reinforcement learning could be leveraged to control the IES with associated uncertainties.

Objective:
• Develop an artificial intelligence module (reinforcement learning agent) in conjunction with a physics-

based model.
• Control the valves to meet electricity generation and pressure balancing.

Reinforcement
Learning 

Agent
Grid demand
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Environment: Modelica based Integrated Energy Systems

§ Conventional PID controllers are used in these models.
§ The RL control mechanism is autonomous, and can be deployed online for real-time control of the IES.
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Experiment on the Balance of Plant
• Model environment: Dymola 2022

• Model to invest with RL algorithm: Balance of 
Plant (From the HYBRID library developed by 
Idaho National Lab)

• Model Details:
o An ideal turbine model, a condenser a feedwater 

system for reheating.

o Several valves that allow steam to flow to the turbine or 
as a bypass to the condenser.

– Original control method: PID controller to meet electricity 
generation and pressure balancing.

– Investigated Method: RL algorithm to control valves

o From a modeling standpoint, test the viability of co-
simulation with an artificial agent and a complex physics 
model, as well as comprehend the effort of training the 
agent with such a system.

o From the control point of view, to compare the PID 
performance and intelligent agent.

Reinforcement

Learning

Agent

PID

Controller
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Agent

Environment

State

Reward

ActionRL Framework

IES component (BOP) in Dymola
based on Modelica  

Python 
Interface for 

Dymola

OpenAI Gym

Agent

ENVIRONMENT

State Action

State: 
Power produced by the BOP.

s = 
!"#$
!"#$%&'

Action:
Turbine control valve (TCV) and 
Bypass valve (BV) positions (0 to 1).

Reward:
e = |s - !"#$_)*%&+)

!"#$%&' | ; minimize error.

r = -
./ 0

Episode
varying 
power 
profiles

OpenAI and Modelica Environment Interface
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Learning Framework
Agent

Environment

State

Reward

ActionRL Framework

Deep Deterministic Policy Gradient (DDPG) algorithm

Q network
(Critic)

Target Q 
network

Policy 
network
(Actor)

Target 
policy 

network

state (s)

! " = argmax
)
*(", -)

action 
(a)

noise

Q(s,a)

/0 = 
1
2 ∑4512 *("4, !("4))

Loss functions :

/6 = 
1
2 ∑4512 74 + 9 1 − < *=)>?("4@, !=)>?("4@)) − *("4, !("4))A

(s’)

!=)>?("4@))
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Action to 
environment

• Four feedforward neural networks
are used.

• The target networks are delayed
networks compared to main
networks.

• The weights of targets are updated
periodically based on the main
networks.

Update 

Update 

Bellman equation
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Electricity Generation with Default and Trained Valve Positions

Electricity Demand: 113MW
Electricity Generation: 102MW
Agent trained valve position:[Turbine control valve: 0.32, Bypass valve:0.616]

Electricity Generation: 408MW
Default valve position:[Turbine control valve: 0.5, Bypass valve:0.001]
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• The agent generates normalized electricity demand while learning how to 
control valves to meet the power demand.

• Performed training with multi step multi episodes

• Multiples episodes indicated general trend during iterations, but not for every 
episode.

Reinforcement Learning Agent Training Progress (On-going)
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Conclusion and Challenges

• The RL agent training process revealed a trend in which the 
agent can learn both turbine control and bypass valve positions 
based on electricity demand.

• There is still work to be done before the agent is fully trained.
o During training, the agent became stuck at the boundary conditions.
o The working range of the action item does not completely match the
working zone of the agent. By fixing this issue, the agent can be trained
more sufficiently.
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