

Applying Design of Experiments Method for the Verification of a Hydropower System

Le Nam Hai Pham^{*,1}, Dietmar Winkler^{*,2}

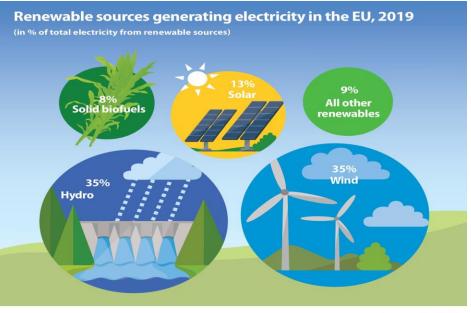
* Department of Electrical Engineering, IT and Cybernetics, University of South-Eastern Norway, Norway

¹Le.Pham@usn.no

² Dietmar.Winkler@usn.no

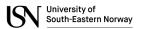
The American Modelica Conference Dallas, October 26-28, 2022

Outline

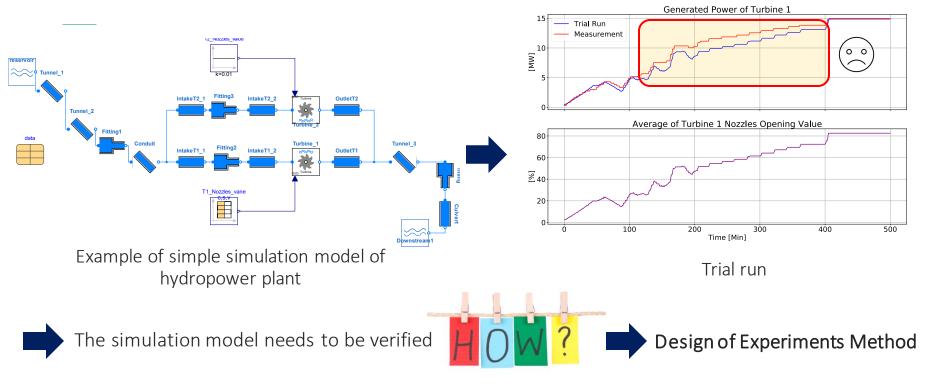

1. Introduction

- ▲ 2. Design of experiments (DoE)
- 3. Modelling Grunnåi Power Plant
- 4. Applying DoE for Model Verification
- 5. Experiments

♀ 6. Conclusions


1. Introduction

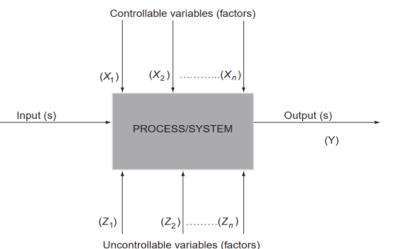
- In 2019, wind and hydropower accounted for the total electricity generated from renewable sources (35% each) [1].
- There are many hydropower plant simulation models.

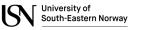


ec.europa.eu/eurostat

[1] <u>Wind and water provide most renewable electricity</u> -<u>Products Eurostat News - Eurostat (europa.eu)</u>

1. Introduction

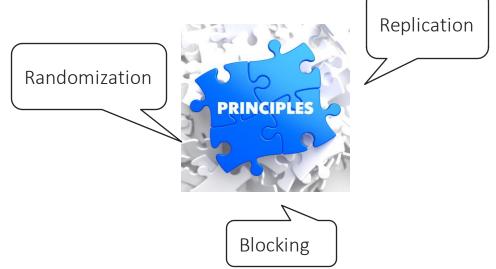

2. Design of Experiments (DoE)

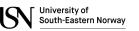

Design of Experiments (DoE) is a systematic, efficient methodology that can be used for:

- System Optimization
- Transfer function
- Comparison

Statistical background of DoE:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_i x_i$$





2. Design of Experiments (DoE)

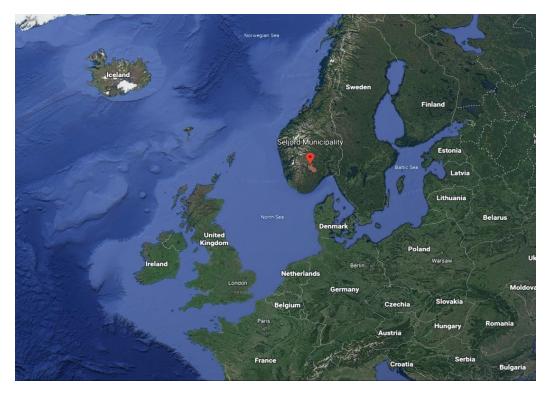
Design of Experiments (DoE) has three main principles:

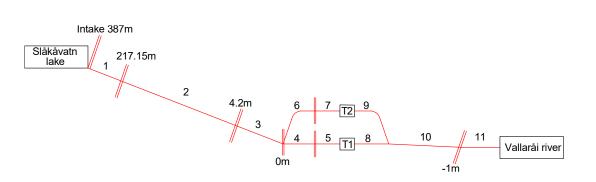
- Randomization
- Replication
- Blocking

2. Design of Experiments (DoE)

Key steps of DoE:

- 1. Objective recognition
- 2. Selection of response
- 3. Selection of process variables
- 4. Performing the experiment
- 5. Interpreting experimental results and conclusions

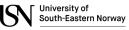



Location

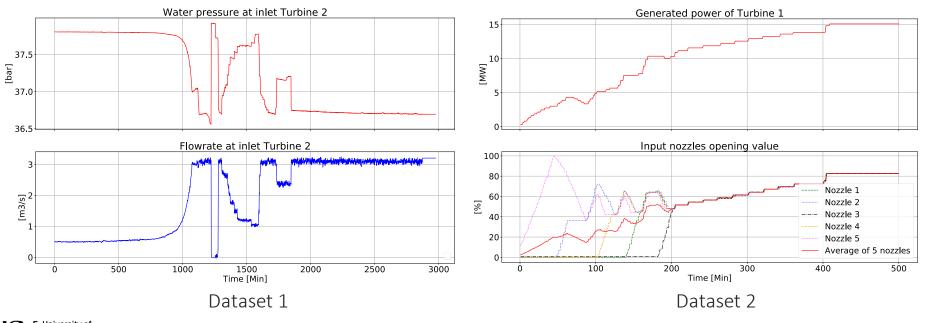
Grunnåi Power Plant is located in Seljord municipality, Telemark, Norway [1]

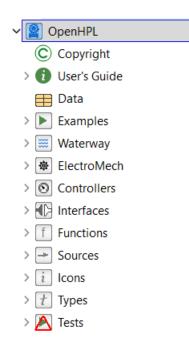
Dam of the hydropower plant

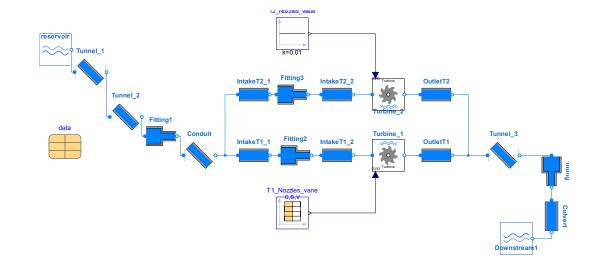
Overview of hydropower plant structure


The waterway geometry

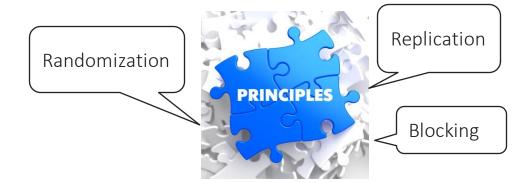
Elements	Index	Length [m]	Diameter [m]
Tunnel_1	1	203	5.8
Tunnel_2	2	1455	5.8
Conduit	3	30	1.2
IntakeT1_1	4	20	1.2
IntakeT1_2	5	1.5	0.8
IntakeT2_1	6	25	1.2
IntakeT2_2	7	1.5	0.6
Outlet T1	8	1.5	0.8
Outlet T2	9	1.5	0.6
Tunnel_3	10	460	3
Culvert	11	58	2

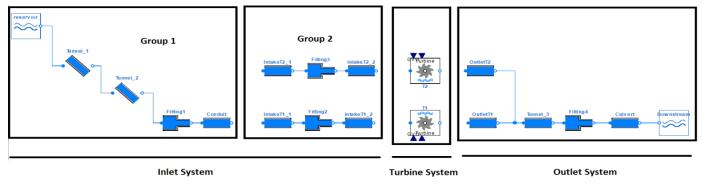

Turbine 1 (T1) Pelton type Turbine 2 (T2) Pelton type


Property	Value	Property	Value
Number of nozzles	5	Number of nozzles	5
Nominal head	385 [m]	Nominal head	389 [m]
Nominal flowrate	4.42 [m ³ /s]	Nominal flowrate	3.08 [m ³ /s]
Nominal power	15 MW	Nominal power	10.76 MW
Turbine efficiency	90%	Turbine efficiency	91%


G2 A SPACE HEATER ANDRIT PROJECT Grunnai I

Measurement data

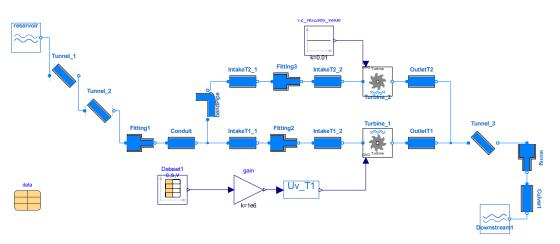




The simulation model of hydropower is created by using OpenHPL (an open-source hydropower library consisting of hydropower units that are modelled in Modelica)

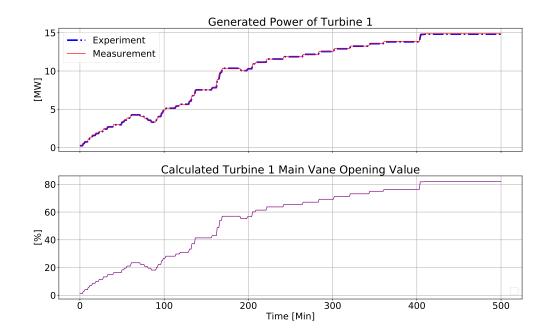
4. Applying DoE for Model Verification

Experiments


Experiment: The following are objectives of experiment:

- Develop a mathematical model which relates generated power of turbine and the input signal value of turbine block, the main vane opening value.
- Verify the mathematical model built.

Input:

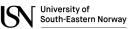

Main vane opening value of turbines.
Output:

- Generated power of turbines.

Experiments

Mathematical models T1: $y = -0.0036 + 5.54 \times 10^{-8}x$ T2: $y = -0.0049 + 9.48 \times 10^{-8}x$ x: Generated power (W) y: Main vane opening value (%)

Conclusions


- 1. DoE is a distinct method in order to simplify the optimal solution for simulation model design due to the difficulties in the process of setting up simulation model.
- 2. Under available measurement data as prerequisites, each portion of the model was experimental in turn to verify and optimize the design as well as eliminate noise factors.
- 3. The results of the series of experiment and the completed simulation model will be used for research and further study cases.
- 4. This paper contributed a simple solution to verify and optimize various type of simulation models in many complex systems with complicated chain of parts.

Thank you for your attention!

University of South-Eastern Norway

